Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandwich in a Pumpkin

21.02.2013
Supramolecular velcro for underwater adhesion

When gluing things together, both surfaces usually need to be dry. Gluing wet surfaces or surfaces under water is a challenge. In the journal Angewandte Chemie, Korean scientists have now introduced a completely new concept. They were able to achieve reversible underwater adhesion by using supramolecular "velcro".

Previously, researchers have primarily attempted to mimic natural underwater "adhesives" like the adhesive molecules used by mussels. Such substances adhere well in wet surroundings, but the adhesion is not reversible. A team led by Kimoon Kim at Pohang University of Science and Technology in Korea has chosen a different approach: they have moved away from natural models—and achieved reversible underwater adhesion.

The primary challenge for conventional adhesion under water is that the water molecules between the surfaces to be glued and the adhesive need to be removed so that these surfaces can react chemically. This is not the case with the new approach. Kim and his co-workers use host–guest interactions between water-soluble host molecule with a hydrophobic pocket and ionic guest molecule with a hydrophobic block. They form robust noncovalent bonds in water. In fact, the repulsion of water molecules is the driving force for formation of the bond, mediated by ion–dipole and hydrophobic interactions.

The researchers chose curcurbit[7]uril as their host and aminomethylferrocene as the guest. Cucurbit[n]uril (n = 5,6,7,8 and 10) are macrocycles—large, ring-shaped molecules made of multiple glycoluril units that can bind other molecules within their cavities. Their name is derived from cucurbita, the Latin name for pumpkin, which they resemble in shape. Ferrocenes are also known as sandwich compounds. The "bread" consists of two aromatic rings of five carbon atoms, while the "filling" is a single iron atom held in the middle. The ferrocene chosen by the researchers lodges very securely and specifically inside a "pumpkin" made of seven glycoluril units.

The researchers produced some silicon strips with many "pumpkins" attached, as well as some with many "sandwiches". When these strips come into contact with each other they stick together tightly, similar to Velcro. Once stuck together, a 1 x 1 cm piece of this supramolecular velcro can hold a weight of 2 kg in water. After drying in air it can hold as much as 4 kg. This is more than double-sided sticky tape can hold.

Like a macroscopic Velcro strip, the molecular version can be separated with a strong pull and reused multiple times. The adhesion can also be reversed chemically through application of a hypochlorite solution, which oxidizes the iron atoms. After reduction with an agent such as ascorbic acid, the velcro can adhere again.

Because the materials used are biocompatible, biological applications may be possible, for example in surgery suture or repairing live tissue. In comparison, the mussel mimetic underwater adhesives require strong oxidizing agents for curing to these applications, which is not the case with the new system.

About the Author
Professor Kimoon Kim is Director of the Center for Self-assembly and Complexity, under Institute for Basic Science (IBS), a newly created research initiative to make the Republic of Korea strong in fundamental research as well as developing new technologies. He also holds a Distinguished University Professorship position at the Department of Chemistry, Pohang University of Science and Technology (POSTECH). He is well-known for his research activities in supramolecular chemistry, especially in host–guest chemistry with cucurbiturils, as well as for introducing chiral metal–organic frameworks (MOF) and their use in heterogeneous asymmetric catalysis. Kim is a recipient of several awards including the Izatt–Christensen award in 2012.

Author: Kimoon Kim, Pohang University of Science and Technology (Republic of Korea), http://css.postech.ac.kr/

Title: Supramolecular Velcro for Reversible Underwater Adhesion

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209382

Kimoon Kim | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>