Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sandwich in a Pumpkin

Supramolecular velcro for underwater adhesion

When gluing things together, both surfaces usually need to be dry. Gluing wet surfaces or surfaces under water is a challenge. In the journal Angewandte Chemie, Korean scientists have now introduced a completely new concept. They were able to achieve reversible underwater adhesion by using supramolecular "velcro".

Previously, researchers have primarily attempted to mimic natural underwater "adhesives" like the adhesive molecules used by mussels. Such substances adhere well in wet surroundings, but the adhesion is not reversible. A team led by Kimoon Kim at Pohang University of Science and Technology in Korea has chosen a different approach: they have moved away from natural models—and achieved reversible underwater adhesion.

The primary challenge for conventional adhesion under water is that the water molecules between the surfaces to be glued and the adhesive need to be removed so that these surfaces can react chemically. This is not the case with the new approach. Kim and his co-workers use host–guest interactions between water-soluble host molecule with a hydrophobic pocket and ionic guest molecule with a hydrophobic block. They form robust noncovalent bonds in water. In fact, the repulsion of water molecules is the driving force for formation of the bond, mediated by ion–dipole and hydrophobic interactions.

The researchers chose curcurbit[7]uril as their host and aminomethylferrocene as the guest. Cucurbit[n]uril (n = 5,6,7,8 and 10) are macrocycles—large, ring-shaped molecules made of multiple glycoluril units that can bind other molecules within their cavities. Their name is derived from cucurbita, the Latin name for pumpkin, which they resemble in shape. Ferrocenes are also known as sandwich compounds. The "bread" consists of two aromatic rings of five carbon atoms, while the "filling" is a single iron atom held in the middle. The ferrocene chosen by the researchers lodges very securely and specifically inside a "pumpkin" made of seven glycoluril units.

The researchers produced some silicon strips with many "pumpkins" attached, as well as some with many "sandwiches". When these strips come into contact with each other they stick together tightly, similar to Velcro. Once stuck together, a 1 x 1 cm piece of this supramolecular velcro can hold a weight of 2 kg in water. After drying in air it can hold as much as 4 kg. This is more than double-sided sticky tape can hold.

Like a macroscopic Velcro strip, the molecular version can be separated with a strong pull and reused multiple times. The adhesion can also be reversed chemically through application of a hypochlorite solution, which oxidizes the iron atoms. After reduction with an agent such as ascorbic acid, the velcro can adhere again.

Because the materials used are biocompatible, biological applications may be possible, for example in surgery suture or repairing live tissue. In comparison, the mussel mimetic underwater adhesives require strong oxidizing agents for curing to these applications, which is not the case with the new system.

About the Author
Professor Kimoon Kim is Director of the Center for Self-assembly and Complexity, under Institute for Basic Science (IBS), a newly created research initiative to make the Republic of Korea strong in fundamental research as well as developing new technologies. He also holds a Distinguished University Professorship position at the Department of Chemistry, Pohang University of Science and Technology (POSTECH). He is well-known for his research activities in supramolecular chemistry, especially in host–guest chemistry with cucurbiturils, as well as for introducing chiral metal–organic frameworks (MOF) and their use in heterogeneous asymmetric catalysis. Kim is a recipient of several awards including the Izatt–Christensen award in 2012.

Author: Kimoon Kim, Pohang University of Science and Technology (Republic of Korea),

Title: Supramolecular Velcro for Reversible Underwater Adhesion

Angewandte Chemie International Edition, Permalink to the article:

Kimoon Kim | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>