Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New salts for chemical soups

30.08.2011
A facile route to versatile organozinc compounds

In order to meet future demands for new pharmaceuticals, innovative materials and agricultural pesticides, the chemical industry is dependent on the ongoing development of effective methods for the synthesis of complex organic compounds.

Because they are so versatile, organometallic molecules are of special significance in this context. Among these, reagents containing zinc atoms have certain advantages over the corresponding organolithium or -magnesium compounds, as they are compatible with a broader array of functional groups.

LMU chemists led by Professor Paul Knochel have now developed a simple “one-pot” method for the economical synthesis of organozinc pivalates. Up until now, such functionalized organozinc compounds were only available in liquid form, and were difficult to transport and store due to their susceptibility to degradation upon contact with air or moisture. The new synthetic route permits their formation as salt-stabilized solids, which can easily be recovered in powder form. “In this form, the reagents can be stored in an argon atmosphere for months without loss of activity,” says Knochel. “They can even be exposed to air for short periods without risk of degradation or ignition.” (Angewandte Chemie International Edition, early view, August 24, 2011)

One of the most prominent applications for organozinc reagents is their use for the so-called Negishi cross-coupling, a type of reaction that provides a simple means of linking carbon atoms together in a virtually unlimited variety of ways, and earned its discoverer a share of the Nobel Prize for Chemistry in 2010. “The new class of organozinc pivalates makes it possible to employ different solvents in the Negishi cross-coupling reaction and greatly extends the spectrum of coupling partners it can be applied to,” says Sebastian Bernhardt, who is the lead author on the new study. “The new reagents contain magnesium salts, which also facilitate the addition of organozinc pivalates to carbonyl groups.” This opens the way to their use for a whole series of applications relevant to the industrial manufacture of fine chemicals. The new scheme for synthesis of these compounds is the subject of an international patent application. (suwe/PH)

Publication:
Preparation of Solid Salt-Stabilized Functionalized Organozinc Compounds and their Application to Cross-Coupling and Carbonyl Addition Reactions
Sebastian Bernhardt, Georg Manolikakes, Thomas Kunz, Paul Knochel;
Angewandte Chemie International Edition, August, 24, 2011,
The manuscript was classified as a VIP (Very Important Paper).
International Patent Application:
Organozinc Complexes and Processes for Making and Using the Same
Sebastian Bernhardt, Georg Manolikakes, Paul Knochel
Contact:
Prof. Dr. Paul Knochel
Department of Chemistry and Biochemistry, LMU Munich
Phone: +49 89/2180-77681
Fax: +49 89/2180-77680
Email: paul.knochel@cup.uni-muenchen.de

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
http://www.knochel.cup.uni-muenchen.de
http://www.lmu.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>