Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella uses protective switch during infection

28.05.2013
Possibly energy-conserving, switch suggests metabolic changes that researchers might exploit to fight systemic illness

For the first time, researchers have found a particular kind of molecular switch in the food poisoning bacteria Salmonella Typhimurium under infection-like conditions.

This switch, using a process called S-thiolation, appears to be used by the bacteria to respond to changes in the environment during infection and might protect it from harm, researchers report this week online in the Proceedings of the National Academy of Sciences Early Edition.

S-thiolation protects proteins from irreversible chemical changes when a cell is stressed. The newly discovered switch might regulate when or how proteins work while offering protection, providing researchers insight into Salmonella infection.

"We continue to recognize just how clever this bug is in adapting to its environment," said systems biologist Josh Adkins of the Department of Energy's Pacific Northwest National Laboratory. "During infection it lives in hostile environments, and so it can use multiple approaches to adjust its functions."

Whole Ensemble

Salmonella Typhimurium causes food poisoning in people and can be fatal in the elderly or very young. Recent technological advances in the field known as proteomics are allowing researchers to explore how proteins, the workhorses of the cell, allow the bacteria to infect and cause illness. Most technologies that examine a cell's ensemble of proteins do so by chopping the proteins up. Adkins, lead author Charles Ansong and other colleagues wanted to look at whole proteins, which provides more information such as how proteins are regulated.

Cells regulate how proteins work in several ways. One of the most common adds molecular pieces that serve as gas pedals on proteins, turning them up or down in a grand orchestrated way. Proteomics methods that chop up proteins allow a researcher to determine that a particular protein was present, but not if it was actually functioning. Those methods also destroy evidence about how hard the gas pedal was pressed.

To identify which proteins were likely turned on or off during Salmonella infection, the team grew the bacteria either with rich food that satisfied all their nutritional needs or with nutrient-poor food that mimicked the kind of stressful environment the microbes find themselves in while infecting someone.

Then the researchers took samples of the bacteria and identified the proteins inside. They used a method called top-down proteomics, a technological advancement that allows researchers to look at wide swaths of whole proteins instead of just a few at a time. The team identified 563 unique proteins. This number is comparable to fungus and human studies but almost three times as many as in other bacterial studies using top-down proteomics.

They also determined if the proteins had molecular modifications on them. These can cap an end of a protein or dot the protein's length. Because different modifications can be mixed and matched on one protein, they ended up with a total of 1,665 different forms of the 563 unique proteins.

"This study shows how well top-down proteomics works, especially to get at regulatory information," said co-author Liljana Pasa-Tolic, who led top-down proteomics development with mass spectroscopist Si Wu at EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus.

Gluts Versus Cysts

Of particular interest to the team were S-thiolation modifications. These modifications cover and protect a protein's sulfur atoms, which tend to snag each other like velcro and cause misshapen proteins. The modifications come in two flavors: a bulky glutathione and a compact cysteine. While glutathione modifications are pretty well studied, only four studies reveal cysteine modifications, and only two of those are in bacteria.

A total of 25 proteins sported glutathiones and another 18 wore cysteines. But nine of these stood out: The glutathiones and the cysteines attached to the same exact spot on the nine proteins. Not at the same time -- the team found that Salmonella used glutathiones at these sites when they were fat and happy, growing with rich food. When grown under stressful conditions with nutritionally poor food, the Salmonella swapped their glutathiones for cysteines.

In addition, switching S-thiolation modifications appeared to be a talent unique to Salmonella. The team checked other bacteria such as Escherichia coli, a common gut bacteria, and Yersinia pestis, which causes plague, to see if other species used this S-thiolation switch on their proteins. They didn't, suggesting that Salmonella had come up with this tactic during its own evolution.

The researchers speculate that Salmonella might use the smaller cysteine under stressed conditions as an energy saving device. Additional research will reveal what control functions the modifications are actually performing on the proteins.

This work was supported by the National Institute of Allergy and Infectious Disease through interagency agreement Y1-AI-8494-01 and the National Institute for General Medical Sciences.

Reference: Charles Ansong, Si Wu, Da Meng, Xiaowen Liu, Heather Brewer, Brooke L. Deatherage Kaiser, Ernesto S. Nakayasu, John R. Cort, Pavel A. Pevzner, Richard D. Smith, Fred Heffron, Joshua N. Adkins and Ljiljana Paša-Toliæ. Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions, Proc Natl Acad Sci U S A, Early Edition online the week of May 27, 2013, DOI 10.1073/pnas.1221210110.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>