Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Salmonella bacteria contaminate salad leaves – it’s not rocket science

03.09.2008
How Salmonella bacteria can cause food poisoning by attaching to salad leaves is revealed in new research presented today (3 September) at the 21st International ICFMH Symposium ‘Food Micro 2008’ conference in Aberdeen.

The new study shows how some Salmonella bacteria use the long stringy appendages they normally use to help them ‘swim’ and move about to attach themselves to salad leaves and other vegetables, causing contamination and a health risk.

Food poisoning from Salmonella and E. coli is commonly associated with eating contaminated bovine or chicken products, as the pathogens live in the guts of cows and the guts and egg-ducts of chickens, and contamination of meat can occur during the slaughtering process.

However, some recent outbreaks of food poisoning have been associated with contaminated salad or vegetable products, and more specifically, pre-bagged salads. For example, in 2007 a Salmonella outbreak in the UK was traced back to imported basil, and an E. coli outbreak in the USA in 2006 was traced to contaminated pre-packed baby spinach.

Between 1996 – 2000, 23% of the UK’s infectious intestinal disease outbreaks like salmonella and E. coli were caused by contaminated food, and of these, 4% were linked to prepared salad.

The new research, led by Professor Gadi Frankel from Imperial College London and carried out with Dr Rob Shaw and colleagues at the University of Birmingham, has uncovered the mechanism used by one particular form of Salmonella called Salmonella enterica serovar Senftenberg, to infect salad leaves, causing a health risk to people who eat them.

Understanding the mechanism that pathogens such as salmonella use to bind themselves to salad leaves is important if scientists are to develop new methods of preventing this kind of contamination and the sickness it causes.

Scientists know that Salmonella and E. coli O157 – a strain of E. coli that can cause serious sickness in humans - can spread to salads and vegetables if they are fertilised with contaminated manure, irrigated with contaminated water, or if they come into contact with contaminated products during cutting, washing, packing and preparation processes. However, until now, scientists did not understand how the pathogens managed to bind to the leaves.

Professor Frankel and his colleagues at the University of Birmingham found that Salmonella enterica serovar Senftenberg bacteria have a secondary use for their flagella - the long stringy ‘propellers’ they use to move around. The flagella flatten out beneath the bacteria and cling onto salad leaves and vegetables like long thin fingers. To test this observation the scientists genetically engineered salmonella without flagella in the lab and found that they could not attach themselves to the leaves, and the salad remained uncontaminated.

Professor Frankel says: “Discovering that the flagella play a key role in Salmonella’s ability to contaminate salad leaves gives us a better understanding then ever before of how this contamination process occurs. Once we understand it, we can begin to work on ways of fighting it.”

The team’s next steps will involve looking at the extent to which different types of salad leaves are affected by salmonella. Professor Frankel explains that some types of leaves are less susceptible to salmonella contamination that others: “If we can find out what factors affect susceptibility, we may be able to develop new technologies to harness the ‘immunity’ found in some salad leaves to protect others from contamination,” he says.

However, Professor Frankel says that even though such a small minority of cases are currently linked to salads, the numbers are likely to increase in coming years. “In their efforts to eat healthily, people are eating more salad products, choosing to buy organic brands, and preferring the ease of ‘pre-washed’ bagged salads from supermarkets, then ever before. All of these factors, together with the globalisation of the food market, mean that cases of Salmonella and E. coli poisoning caused by salads are likely to rise in the future. This is why it’s important to get a head start with understanding how contamination occurs now,” he said.

In a previous study, Professor Frankel and his colleagues discovered the mechanism by which E. coli 0157 binds to salad leaves. They have shown that E. coli O157 bacteria use short needle-like filaments, which are normally used to inject bacterial proteins into human cells, to attach them to salad leaves, causing contamination and a risk of transmission via the food chain to humans.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>