Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Salmonella bacteria contaminate salad leaves – it’s not rocket science

03.09.2008
How Salmonella bacteria can cause food poisoning by attaching to salad leaves is revealed in new research presented today (3 September) at the 21st International ICFMH Symposium ‘Food Micro 2008’ conference in Aberdeen.

The new study shows how some Salmonella bacteria use the long stringy appendages they normally use to help them ‘swim’ and move about to attach themselves to salad leaves and other vegetables, causing contamination and a health risk.

Food poisoning from Salmonella and E. coli is commonly associated with eating contaminated bovine or chicken products, as the pathogens live in the guts of cows and the guts and egg-ducts of chickens, and contamination of meat can occur during the slaughtering process.

However, some recent outbreaks of food poisoning have been associated with contaminated salad or vegetable products, and more specifically, pre-bagged salads. For example, in 2007 a Salmonella outbreak in the UK was traced back to imported basil, and an E. coli outbreak in the USA in 2006 was traced to contaminated pre-packed baby spinach.

Between 1996 – 2000, 23% of the UK’s infectious intestinal disease outbreaks like salmonella and E. coli were caused by contaminated food, and of these, 4% were linked to prepared salad.

The new research, led by Professor Gadi Frankel from Imperial College London and carried out with Dr Rob Shaw and colleagues at the University of Birmingham, has uncovered the mechanism used by one particular form of Salmonella called Salmonella enterica serovar Senftenberg, to infect salad leaves, causing a health risk to people who eat them.

Understanding the mechanism that pathogens such as salmonella use to bind themselves to salad leaves is important if scientists are to develop new methods of preventing this kind of contamination and the sickness it causes.

Scientists know that Salmonella and E. coli O157 – a strain of E. coli that can cause serious sickness in humans - can spread to salads and vegetables if they are fertilised with contaminated manure, irrigated with contaminated water, or if they come into contact with contaminated products during cutting, washing, packing and preparation processes. However, until now, scientists did not understand how the pathogens managed to bind to the leaves.

Professor Frankel and his colleagues at the University of Birmingham found that Salmonella enterica serovar Senftenberg bacteria have a secondary use for their flagella - the long stringy ‘propellers’ they use to move around. The flagella flatten out beneath the bacteria and cling onto salad leaves and vegetables like long thin fingers. To test this observation the scientists genetically engineered salmonella without flagella in the lab and found that they could not attach themselves to the leaves, and the salad remained uncontaminated.

Professor Frankel says: “Discovering that the flagella play a key role in Salmonella’s ability to contaminate salad leaves gives us a better understanding then ever before of how this contamination process occurs. Once we understand it, we can begin to work on ways of fighting it.”

The team’s next steps will involve looking at the extent to which different types of salad leaves are affected by salmonella. Professor Frankel explains that some types of leaves are less susceptible to salmonella contamination that others: “If we can find out what factors affect susceptibility, we may be able to develop new technologies to harness the ‘immunity’ found in some salad leaves to protect others from contamination,” he says.

However, Professor Frankel says that even though such a small minority of cases are currently linked to salads, the numbers are likely to increase in coming years. “In their efforts to eat healthily, people are eating more salad products, choosing to buy organic brands, and preferring the ease of ‘pre-washed’ bagged salads from supermarkets, then ever before. All of these factors, together with the globalisation of the food market, mean that cases of Salmonella and E. coli poisoning caused by salads are likely to rise in the future. This is why it’s important to get a head start with understanding how contamination occurs now,” he said.

In a previous study, Professor Frankel and his colleagues discovered the mechanism by which E. coli 0157 binds to salad leaves. They have shown that E. coli O157 bacteria use short needle-like filaments, which are normally used to inject bacterial proteins into human cells, to attach them to salad leaves, causing contamination and a risk of transmission via the food chain to humans.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>