Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella's sweet tooth predicts its downfall

22.05.2009
For the first time UK scientists have shown what the food poisoning bug Salmonella feeds on to survive as it causes infection: glucose.

Their discovery of Salmonella's weakness for sugar could provide a new way to vaccinate against it. The discovery could also lead to vaccine strains to protect against other disease-causing bacteria, including superbugs.

"This is the first time that anyone has identified the nutrients that sustain Salmonella while it is infecting a host's body," says Dr Arthur Thompson from the Institute of Food Research.

The nutrition of bacteria during infection is an emerging science. This is one of the first major breakthroughs, achieved in collaboration with Dr. Gary Rowley at the University of East Anglia.

Salmonella food poisoning causes infection in around 20 million people worldwide each year and is responsible for about 200,000 human deaths. It also infects farm animals and attaches to salad vegetables.

During infection, Salmonella bacteria are engulfed by immune cells designed to kill them. But instead the bacteria multiply.

Salmonella must acquire nutrients to replicate. The scientists focused on glycolysis, the process by which sugars are broken down to create chemical energy. They constructed Salmonella mutants unable to transport glucose into the immune cells they occupy and unable to use glucose as food. These mutant strains lost their ability to replicate within immune cells, rendering them harmless

"Our experiments showed that glucose is the major sugar used by Salmonella during infection," said Dr Thompson.

The mutant strains still stimulate the immune system, and the scientists have filed patents on them which could be used to develop vaccines to protect people and animals against poisoning by fully virulent Salmonella.

Glycolysis occurs in most organisms including other bacteria that occupy host cells. Disrupting how the bacteria metabolise glucose could therefore be used to create vaccine strains for other pathogenic bacteria, including superbugs.

The harmless strains could also be used as vaccine vectors. For example, the flu gene could be expressed within the harmless Salmonella strain and safely delivered to the immune system.

The next stage of the research will be to test whether the mutants elicit a protective immune response in mice.

In Germany the nutrition of bacteria is the subject of a six-year priority programme of research to investigate why bacteria are able to multiply inside a host's body to cause disease.

The IFR is an institute of the Biotechnology and Biological Sciences Research Council (BBSRC). This research was funded by a Core Strategic Grant from BBSRC.

Andrew Chapple | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>