Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk scientists detect molecular obesity link to insulin resistance, type II diabetes

04.03.2009
A molecular switch found in the fat tissue of obese mice is a critical factor in the development of insulin resistance, report scientists at the Salk Institute for Biological Studies.

Previously found to increase glucose production by the liver during fasting, the culprit—a protein known as CREB—is also activated in fat tissue of obese mice where it promotes insulin resistance.

Their findings, published in the March issue of Cell Metabolism, suggest that CREB activity could provide an early warning for obese people predisposed to develop insulin resistance and may lead to new diabetes treatments that would not require weight loss.

"Obesity is a major risk factor for the development of type II diabetes," says Marc Montminy, M.D., Ph.D., a professor in the Clayton Foundation Laboratories for Peptide Biology who led the current study, "but not everyone who is obese becomes insulin resistant, so identifying the initial events that trigger resistance represents an important goal for diabetes research."

High fat diets have led to a surge in the adult-onset form of diabetes, known as type II, which occurs when patients' tissues become resistant to insulin, a hormone produced when we eat that controls how cells use glucose as an energy source. At last count, 23.6 million people in the United States suffer from diabetes, with another 57 million classed as having pre diabetes-like symptoms, numbers that are set to increase along with our ever-expanding waistbands.

"Given that obesity is now at its highest levels and expected to worsen in the near future, therapies that could potentially halt the genesis of type II diabetes in the face of obesity will be of great value," says co-first author Maziyar Saberi, Ph.D., a postdoctoral researcher in the Division of Endocrinology and Metabolism at the University of California, San Diego.

To understand insulin resistance, the Salk scientists turned to their knowledge of what happens when animals fast, since the two states have many features in common. When our bodies go without food we begin to break up fat and use it as an alternative energy source while the body's preferred choice, glucose, is off the menu. This process, known as lipolysis, is tightly regulated; when we eat again the resulting insulin switches lipolysis back off in favor of using sugar as fuel.

"Fasting in many ways therefore resembles what an insulin resistant state is about," explains Montminy, "increased production of glucose in the liver, decreased glucose uptake in muscle, increased lipolysis in the fat cells and no production of insulin." Where normal fasting and diabetes differ however is that lipolysis in patients with insulin resistance goes unchecked.

Previous work by Montminy and colleagues uncovered a protein known as CREB that orchestrates the body's response to fasting. When blood glucose levels run low, CREB revs up glucose production in the liver to maintain the brain's energy supply. But just as the scientists' model had predicted, CREB is also activated in the fat tissue of insulin-resistant, obese mice.

To test whether getting rid of CREB specifically in the fat might prove beneficial, postdoctoral researcher and co-first author Ling Qi, Ph.D., created mice that secrete a synthetic protein known as ACREB in mature fat cells. ACREB sticks to CREB with a high affinity, soaking it up and preventing it from binding to DNA and switching on its target genes.

At first glance the mice containing ACREB in their fat cells appeared normal. But when the scientists fed these mice a high fat, junk food-like diet they observed something remarkable. Although they became obese, gluttonous ACREB mice did not display the symptoms of diabetes such a feeding frenzy would usually cause. "Simply blocking CREB's activity improved insulin sensitivity and reduced inflammation in the obese animals," observed Qi.

And the good news didn't stop there. Even more intriguing was what happened in other tissues when CREB was turned off in adipose fat tissue. Not only did the obese ACREB mice maintain the ability to sense insulin in fat, this beneficial effect spread to the muscle and liver.

Such inter-tissue communication suggested a role for CREB in the secretion of hormones, which can travel freely through the body. One such fat-derived hormone is adiponectin, which is known to increase tissues' responsiveness to the effects of insulin. And indeed, adiponectin levels were elevated in ACREB mice, possibly explaining the mice's improved insulin sensitivity.

The scientists are now testing whether disrupting other proteins that act alongside CREB to switch on genes in the fat will have the same effect. Finding one that is specific to fat cells might allow therapies that could mimic the effect seen in the ACREB mice with out disrupting CREB's key functions in other tissues. In the meantime, high CREB activity in fat tissue may prove a valuable early indicator of a pre-diabetic state.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>