Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk scientists add new bond to protein engineering toolbox

06.08.2013
By adding covalent bonds to proteins, researchers can design new drugs, imaging agents, or molecules that aid basic research

Proteins are the workhorses of cells, adopting conformations that allow them to set off chemical reactions, send signals and transport materials. But when a scientist is designing a new drug, trying to visualize the processes inside cells, or probe how molecules interact with each other, they can't always find a protein that will do the job they want. Instead, they often engineer their own novel proteins to use in experiments, either from scratch or by altering existing molecules.

Engineered proteins can be drugs that turn on or off signaling pathways in the body, imaging agents that light up other molecules or processes, or enzymes that produce molecules with commercial value. Now, researchers at the Salk Institute for Biological Studies have developed a new tool for such protein engineering: a way to add strong, unbreakable bonds between two points in a protein or between two proteins. The new technique was published August 4, 2013, in the journal Nature Methods.

"Even though you could modify proteins in lots of different ways, adding a new bond into a protein was not possible before this," says senior study author Lei Wang, an associate professor in Salk's Jack H. Skirball Center for Chemical Biology and Proteomics and holder of the Frederick B. Rentschler Developmental Chair.

When a protein folds from a loose chain of amino acid building blocks into its active three-dimensional structure, bonds and chemical interactions naturally form between different parts of the chain to keep the structure assembled. Most are relatively weak, driven by the electrochemical charges of different amino acids. Stronger bonds, called disulfide bridges, occur between pairs of cysteines, one particular amino acid. But for protein engineers, either type of bond has its own deficiencies. So linking two parts of a protein in a predictable and permanent way had been notoriously hard.

Wang and his collaborators wanted to be able to add strong, irreversible bonds ---- called covalent bonds---- to proteins to alter their shape, make them more stable, or attach them to one another. They knew that cysteine amino acids reacted not only with other cysteines to make disulfide bridges, but with many other chemicals as well. So they began trying to create a new amino acid, different from the 20 that exist naturally, that cysteine would covalently bind to. They needed just the right compound, one that didn't bind to cysteine too quickly but also didn't bind too weakly.

"If you introduce something into a protein that forms bonds very easily, then it will bind to everything and make a big mess," Zheng Xiang, a postdoctoral fellow on Wang's team says. "But if it doesn't bind easily enough, then you won't be guaranteed the bond you want."

Xiang created dozens of possible amino acids, using basic laws of chemistry to design molecules that would potentially react with cysteine. Then, they tested each by mixing it with a solution of cysteine molecules to see if it bound with just the right strength. After a series of initial tests, Wang and Xiang settled on a newly created amino acid called p-2-fluoroacetyl-phenylalanine, or Ffact. To test whether Ffact, when integrated into proteins, would work as well as it did loose in solution, Wang and postdoctoral fellows Haiyan Ren and Irene Coin next designed three proteins using the new amino acid in their sequences.

Their first goal was to create a bond between an "affibody," an engineered protein similar to an antibody, and the molecule that it recognizes, called Z protein. The affibody and Z protein naturally associate, but usually come apart after some time. By engineering them to bind permanently together whenever they interact, scientists can more easily detect whether the interaction occurs or whether a solution contains both molecules. So Wang and his colleagues engineered the affibody to contain an Ffact amino acid in a spot that aligned perfectly with a cysteine in the Z protein. When the researchers combined the engineered affibody and the Z protein, the two proteins successfully formed a covalent bond between the two amino acids when they got close.

"Because the interaction is now irreversible, the affinity between the two proteins is much higher," Ren explains. "If you apply this to diagnostic tests, it means you can detect a lower concentration of a substrate."

In a similar test of the bond's strength, Coin engineered a G protein coupled receptor and the signaling molecule that turns it on to form a bond when they associate. Once again, the amino acids became covalently attached.

To illustrate that Ffact and cysteine could also bind within a single protein's structure, Wang designed a version of a fluorescent protein in which the cysteine and Ffact were opposite each in different arms of the structure. With the help from Assistant Professor Hu Cang and Ying Hu, a Salk research associate, they found that the number of photons one can get out of the protein almost doubled because of the increased stability caused when a covalent bond formed. Such an improvement is a boon to those using fluorescence to visualize the movement or arrangement of molecules in a cell on the single molecule level, as it can increase the resolution and duration of imaging.

"I think anyone who is working on proteins, or anything related to proteins, could make use of this new technology," says Wang. "It can provide a novel way to control proteins or design proteins to study basic biology."

In the future, Wang's team hopes to design additional amino acids that can be integrated into protein structures to form other kinds of bonds. The more bonds that are in the protein engineering toolkit, the more diverse proteins can be designed, he says.

Other researchers on the study were Zheng Xiang, Haiyan Ren and Irene Coin of the Salk Institute for Biological Studies, and Jing Wei of JadeBio, Inc.

The work was supported by the California Institute for Regenerative Medicine and the National Institutes of Health.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Kat Kearney | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>