Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saint Louis University, University of Toronto biologists help decode turtle genome

24.04.2013
Discoveries may offer insights into the management of some human health disorders

A group of 50 researchers from around the globe, including biology professors Daniel Warren, Ph.D., from Saint Louis University and Leslie Buck, Ph.D., from the University of Toronto, have spent the last several years sequencing and analyzing the genome of the western painted turtle and the results of their research point to some important conclusions that may be important for human health.

The western painted turtle, one of the most widespread and well-studied turtles, exhibits an extraordinary ability to adapt to extreme physiological conditions and it is that adaptability that might have a direct relevance to human health conditions, particularly those related to oxygen deprivation and hypothermia and longevity.

Warren, an assistant professor in SLU's Department of Biology, shared the background of the research and its importance in medical treatments.

"This remarkable turtle has the ability to survive without oxygen longer than any other air-breathing vertebrate for as long as four months when they overwinter under the ice of their frozen ponds," Warren said. "Many human diseases, however, involve tissue damage caused by oxygen deprivation, such as occurs with stroke and heart attack."

"Our contribution to the Genome Biology study was to carry out an experiment here at SLU, to identify genes in the turtle's heart and brain that might account for the abilities to avoid this tissue damage," Warren added. "We focused our efforts especially on those genes that are also present in our own human genome."

Buck, associate chair of Graduate Studies in the department of Cell and Systems Biology at the University of Toronto, and co-investigator on the study, said the painted turtle's ability to survive without oxygen has important implications related to the use of anesthetics on human patients.

"The turtle's brain naturally survives without oxygen (anoxia) during this period and this makes it a great model to study the ways we can protect human brain from the debilitating effects of stroke," Buck said. "And there's more. When faced with low oxygen conditions it rapidly lowers metabolism by over 90 percent, similar to the effect of anesthetics during human surgeries. It may therefore also be a natural anesthetic model in which we can explore safer forms on anesthesia."

"Our RNA sequencing data in the genome paper reveals over 13000 genes in common with humans and 19 genes that increase their activity in turtle brain and 23 in heart following 24 hours of anoxia. One even increases 130 fold above controls giving us excellent leads to follow in our study of the mechanisms underlying natural anoxia tolerance," Buck added.

Additional information on the study is available at: http://genomebiology.com/2013/14/3/R28/abstract.

Learn more about Daniel Warren, Ph.D. -
http://www.slu.edu/department-of-biology-home/faculty-and-staff/dr-daniel-warren
Learn more about Leslie Buck, Ph.D. -
http://www.csb.utoronto.ca/faculty/buck-leslie
For media inquiries or to schedule an interview with Dr. Warren, call Jeanette Grider in SLU's Department of University Communications at 314-977-2538. To schedule an interview with Dr. Buck, call Christine Elias, Associate Director of Communications, Faculty of Arts & Science, University of Toronto at 416-946-5499.

Saint Louis University is a Catholic, Jesuit institution that values academic excellence, life-changing research, compassionate health care, and a strong commitment to faith and service. Founded in 1818, the University fosters the intellectual and character development of nearly 14,000 students on two campuses in St. Louis, Missouri and Madrid, Spain. Building on a legacy of nearly 200 years, Saint Louis University continues to move forward with an unwavering commitment to a higher purpose, a greater good.

MEDIA CONTACTS:

Jeanette Grider
Saint Louis University
Department of University Communications
Phone: 314-977-2538
Email: jgrider1@slu.edu
Christine Elias
Faculty of Arts & Science, University of Toronto
Communications Office
416-946-5499
Email: christine.elias@utoronto.ca
PHOTOS:
http://www.slu.edu/pr/images/buck_toronto_turtle_160.jpg
http://www.slu.edu/pr/images/warren_dan_turtle_135.jpg
http://www.slu.edu/pr/images/warren_dan_turtle_160.jpg
http://www.slu.edu/pr/images/warren_dan_turtle_450.jpg
Photo Credit: Steve Dolan

Christine Elias | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>