Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Saint Louis University Researchers Discover A Way to Detect New Viruses

Subtracting the Sequenced Human Genome from Blood Serum, Scientists Sift through the Remainder
In research published in Biochemical and Biophysical Research Communications, Saint Louis University researchers describe a technology that can detect new, previously unknown viruses. The technique offers the potential to screen patients for viruses even when doctors have not identified a particular virus as the likely source of an infection.

In the new approach, scientists use blood serum as a biological source to categorize and discover viruses.

Taking advantage of the complete deciphering of the human genome, SLU researchers used a next-generation sequencing (NGS) approach called transcriptome subtraction. With this process, the research team subtracted the entire human genetic sequence from the genetic material in the blood they were examining. By studying what remained, they were able to identify viral genetic material in the blood.

“We have discovered a technology that allows us to detect new viruses,” said Adrian Di Bisceglie, M.D., chairman of the department of internal medicine at Saint Louis University. “We isolate DNA and RNA, amplify the amount of genetic material present in the blood, do ultra-deep sequencing and use an algorithm to search for matches for every known piece of genetic code, both human and for microbes.

“Once we remove the known portions, we’re ultimately left with new viruses.”

When doctors suspect that a patient has a viral infection, it can be difficult to determine which virus is the culprit.

One way to test for the presence of a virus is to grow it in the lab from a biological sample, like tissue or blood, from the patient. However, that approach won’t work if tissue isn’t available, if there is no logical starting place for deciding which viruses to screen for (such as knowing that a patient was exposed to a particular virus), or in a “hit and run” viral infection, in which case there is a narrow time frame for tissue sampling.

Another option is to search for viral genetic material in the body.

There are several methods that use this approach (such as immune based-library screening, mass spectrometry and microarray), but the most useful is next-generation sequencing.

After sorting out the human genetic material from the viral material, the research team compared the viral material against database libraries of known viruses. This identifies any known viruses in the blood.

After this second subtraction, researchers examined the remaining, unidentified material, and sorted out bacteria, phages, and viruses, among other material, based on specific protein signatures that mark each type of microorganism. The discovered, previously unknown viruses remain candidates for further investigation.

Key to the research team’s success was the discovery of how to amplify the genetic material in the blood, says study researcher Xiaofeng Fan, M.D., associate professor of internal medicine at Saint Louis University.

In the past, blood serum wasn’t used to its full potential because RNA degrades too quickly, leaving too little material to study. The amplification process used by the research team eliminated this problem.

The approach that the research team developed has the potential for immediate application in clinical situations concerning an unknown viral infection, like, for example, the recent outbreak of a SARS-like virus in Saudi Arabia.

In addition to offering a way to discover new viruses and test for known viruses in ill patients, this new technology could provide a valuable approach for those in the biodefense field looking for a way to quickly spot existing bio-threats.

Di Bisceglie says this technique will contribute to our understanding of the many viruses that live in the human body.

“Just as the human microbiome project is chronicling the bacteria that live and co-exist in every person, we also are studying the human virome to know more about the viruses that live in all of us. We believe not all are harmful and some may even be beneficial,” Di Bisceglie said.

Saint Louis University has applied for patent protection of this technology and will now actively pursue its commercialization.

“Dr. Di Bisceglie is a recognized world leader in virology and we expect scientific companies and commercial enterprises in this field to have strong interest in the new technique,” said Graeme Thomas, director of SLU’s office of technology management.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.

Carrie Bebermeyer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>