Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saint Louis University Researchers Discover A Way to Detect New Viruses

18.06.2013
Subtracting the Sequenced Human Genome from Blood Serum, Scientists Sift through the Remainder
In research published in Biochemical and Biophysical Research Communications, Saint Louis University researchers describe a technology that can detect new, previously unknown viruses. The technique offers the potential to screen patients for viruses even when doctors have not identified a particular virus as the likely source of an infection.

In the new approach, scientists use blood serum as a biological source to categorize and discover viruses.

Taking advantage of the complete deciphering of the human genome, SLU researchers used a next-generation sequencing (NGS) approach called transcriptome subtraction. With this process, the research team subtracted the entire human genetic sequence from the genetic material in the blood they were examining. By studying what remained, they were able to identify viral genetic material in the blood.

“We have discovered a technology that allows us to detect new viruses,” said Adrian Di Bisceglie, M.D., chairman of the department of internal medicine at Saint Louis University. “We isolate DNA and RNA, amplify the amount of genetic material present in the blood, do ultra-deep sequencing and use an algorithm to search for matches for every known piece of genetic code, both human and for microbes.

“Once we remove the known portions, we’re ultimately left with new viruses.”

When doctors suspect that a patient has a viral infection, it can be difficult to determine which virus is the culprit.

One way to test for the presence of a virus is to grow it in the lab from a biological sample, like tissue or blood, from the patient. However, that approach won’t work if tissue isn’t available, if there is no logical starting place for deciding which viruses to screen for (such as knowing that a patient was exposed to a particular virus), or in a “hit and run” viral infection, in which case there is a narrow time frame for tissue sampling.

Another option is to search for viral genetic material in the body.

There are several methods that use this approach (such as immune based-library screening, mass spectrometry and microarray), but the most useful is next-generation sequencing.

After sorting out the human genetic material from the viral material, the research team compared the viral material against database libraries of known viruses. This identifies any known viruses in the blood.

After this second subtraction, researchers examined the remaining, unidentified material, and sorted out bacteria, phages, and viruses, among other material, based on specific protein signatures that mark each type of microorganism. The discovered, previously unknown viruses remain candidates for further investigation.

Key to the research team’s success was the discovery of how to amplify the genetic material in the blood, says study researcher Xiaofeng Fan, M.D., associate professor of internal medicine at Saint Louis University.

In the past, blood serum wasn’t used to its full potential because RNA degrades too quickly, leaving too little material to study. The amplification process used by the research team eliminated this problem.

The approach that the research team developed has the potential for immediate application in clinical situations concerning an unknown viral infection, like, for example, the recent outbreak of a SARS-like virus in Saudi Arabia.

In addition to offering a way to discover new viruses and test for known viruses in ill patients, this new technology could provide a valuable approach for those in the biodefense field looking for a way to quickly spot existing bio-threats.

Di Bisceglie says this technique will contribute to our understanding of the many viruses that live in the human body.

“Just as the human microbiome project is chronicling the bacteria that live and co-exist in every person, we also are studying the human virome to know more about the viruses that live in all of us. We believe not all are harmful and some may even be beneficial,” Di Bisceglie said.

Saint Louis University has applied for patent protection of this technology and will now actively pursue its commercialization.

“Dr. Di Bisceglie is a recognized world leader in virology and we expect scientific companies and commercial enterprises in this field to have strong interest in the new technique,” said Graeme Thomas, director of SLU’s office of technology management.

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious disease.

Carrie Bebermeyer | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>