Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe nanomotors propelled by sugar

06.10.2015

Researchers at the Max Planck Institute for Intelligent Systems and their collaborators have made a breakthrough in nanomotors for future applications in medicine by developing the first ever fully biocompatible self-propelling particles that are powered by enzymes that consume biological fuels, such as glucose.

In a study published today in Nanoletters, Max Planck research group leader and ICREA research professor Samuel Sánchez and his collaborators at the University of Tübingen and the MPI for Solid State Research, Germany, describe their fabrication of the world’s first enzyme-powered synthetic nanomotors that overcome the disadvantages of current systems by being both biocompatible and powered by biologically benign fuels.


An enzyme-powered nanomotor

Dr. Samuel Sánchez

The new bio-friendly mini motors, which are made from hollow mesoporous silica proven to be harmless to cells and tissues, will be able to be used in biomedical applications, as their self-propulsion is powered by the biocatalytic reactions of three different naturally occurring enzymes: catalase, urease, and glucose oxidase. The enzymatic reactions power the Janus nanoparticles – special types whose surfaces have two or more distinct physical properties – by occurring asymmetrically on only one surface, propelling them in the opposite direction. Not only that, but the researchers based in Tübingen also broke new ground during this study by measuring, for the first time, the propulsion force of nanomotors using optical tweezers, leading to a better understanding of how self-propelled nanoparticles behave.

“To be safe for use in applications in medicine in the body, nanoparticles need to be made out of biocompatible and biodegradable materials, as well as being capable of both autonomous motion using biologically benign fuels and cargo delivery – such as drug delivery – at small scales,” says Samuel, who heads what has been described as ‘one of the leading groups in the field’ of nanomotor research, the Smart Nano-Bio-Devices group, with locations at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart and at the Institute for Bioengineering of Catalonia (IBEC) in Barcelona. “We’ve tackled all these issues with our new particles. For their architecture, we used a material which offers a high drug-loading capacity owing to its hollow structure; and for propulsion, we based our methods on the quite recent discovery that enzymes by themselves can act as self-propelled nanomotors as well as being anchored to larger artificial objects, such as carbon nanotubes, to provide a propulsion force using catalytic reactions.”

Such biocatalytic reactions triggered by enzymes consume non-toxic ‘fuel’, as they are naturally present in a biological environment.Different enzyme/fuel combinations can also be used, such as catalase and hydrogen peroxide or glucose and glucose oxidase, meaning the method is very versatile with the potential to be extended to further enzymes.

Previous active micro-and nanosystems developed for potential biomedical uses – as carriers of drug molecules to targeted sites, for example – were limited when it came to real applications because their usual methods of propulsion, such as the decomposition of hydrogen peroxide and platinum, were short-lived and harsh; others were simply passive nanosystems, unable to move autonomously. Additionally, these nanomotors are for first time made up of non-metallic components but only made of silica and enzymes, which assures their biocompatibility and potential biodegradation .

The next steps for the researchers will be to explore how to increase the effective driving force and guide their bio-friendly nanomotors by external manipulation methods, such as chemotaxis, magnetic control or ultrasound, leading to directional movement for active drug delivery to specific locations.

The Max Planck Institute for Intelligent Systems with locations in Stuttgart and Tübingen emerged in 2011 from the Max Planck Institute for Metals Research in Stuttgart. In eight departments, scientists conduct research in the fields of materials science, computer science and biology.

Weitere Informationen:

http://www.is.mpg.de/sanchez

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03100

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>