Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe nanomotors propelled by sugar

06.10.2015

Researchers at the Max Planck Institute for Intelligent Systems and their collaborators have made a breakthrough in nanomotors for future applications in medicine by developing the first ever fully biocompatible self-propelling particles that are powered by enzymes that consume biological fuels, such as glucose.

In a study published today in Nanoletters, Max Planck research group leader and ICREA research professor Samuel Sánchez and his collaborators at the University of Tübingen and the MPI for Solid State Research, Germany, describe their fabrication of the world’s first enzyme-powered synthetic nanomotors that overcome the disadvantages of current systems by being both biocompatible and powered by biologically benign fuels.


An enzyme-powered nanomotor

Dr. Samuel Sánchez

The new bio-friendly mini motors, which are made from hollow mesoporous silica proven to be harmless to cells and tissues, will be able to be used in biomedical applications, as their self-propulsion is powered by the biocatalytic reactions of three different naturally occurring enzymes: catalase, urease, and glucose oxidase. The enzymatic reactions power the Janus nanoparticles – special types whose surfaces have two or more distinct physical properties – by occurring asymmetrically on only one surface, propelling them in the opposite direction. Not only that, but the researchers based in Tübingen also broke new ground during this study by measuring, for the first time, the propulsion force of nanomotors using optical tweezers, leading to a better understanding of how self-propelled nanoparticles behave.

“To be safe for use in applications in medicine in the body, nanoparticles need to be made out of biocompatible and biodegradable materials, as well as being capable of both autonomous motion using biologically benign fuels and cargo delivery – such as drug delivery – at small scales,” says Samuel, who heads what has been described as ‘one of the leading groups in the field’ of nanomotor research, the Smart Nano-Bio-Devices group, with locations at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart and at the Institute for Bioengineering of Catalonia (IBEC) in Barcelona. “We’ve tackled all these issues with our new particles. For their architecture, we used a material which offers a high drug-loading capacity owing to its hollow structure; and for propulsion, we based our methods on the quite recent discovery that enzymes by themselves can act as self-propelled nanomotors as well as being anchored to larger artificial objects, such as carbon nanotubes, to provide a propulsion force using catalytic reactions.”

Such biocatalytic reactions triggered by enzymes consume non-toxic ‘fuel’, as they are naturally present in a biological environment.Different enzyme/fuel combinations can also be used, such as catalase and hydrogen peroxide or glucose and glucose oxidase, meaning the method is very versatile with the potential to be extended to further enzymes.

Previous active micro-and nanosystems developed for potential biomedical uses – as carriers of drug molecules to targeted sites, for example – were limited when it came to real applications because their usual methods of propulsion, such as the decomposition of hydrogen peroxide and platinum, were short-lived and harsh; others were simply passive nanosystems, unable to move autonomously. Additionally, these nanomotors are for first time made up of non-metallic components but only made of silica and enzymes, which assures their biocompatibility and potential biodegradation .

The next steps for the researchers will be to explore how to increase the effective driving force and guide their bio-friendly nanomotors by external manipulation methods, such as chemotaxis, magnetic control or ultrasound, leading to directional movement for active drug delivery to specific locations.

The Max Planck Institute for Intelligent Systems with locations in Stuttgart and Tübingen emerged in 2011 from the Max Planck Institute for Metals Research in Stuttgart. In eight departments, scientists conduct research in the fields of materials science, computer science and biology.

Weitere Informationen:

http://www.is.mpg.de/sanchez

http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03100

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>