Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sacred lotus genome sequence enlightens scientists

13.05.2013
The sacred lotus (Nelumbo nucifera) is a symbol of spiritual purity and longevity. Its seeds can survive up to 1,300 years, its petals and leaves repel grime and water, and its flowers generate heat to attract pollinators.

Now researchers report in the journal Genome Biology that they have sequenced the lotus genome, and the results offer insight into the heart of some of its mysteries.

The sequence reveals that of all the plants sequenced so far – and there are dozens – sacred lotus bears the closest resemblance to the ancestor of all eudicots, a broad category of flowering plants that includes apple, cabbage, cactus, coffee, cotton, grape, melon, peanut, poplar, soybean, sunflower, tobacco and tomato.

The plant lineage that includes the sacred lotus forms a separate branch of the eudicot family tree, and so lacks a signature triplication of the genome seen in most other members of this family, said University of Illinois plant biology and Institute for Genomic Biology professor Ray Ming, who led the analysis with Jane Shen-Miller, a plant and biology professor at the University of California at Los Angeles (who germinated a 1,300-year-old sacred lotus seed); and Shaohua Li, director of the Wuhan Botanical Garden at the Chinese Academy of Sciences.

"Whole-genome duplications – the doubling, tripling (or more) of an organism's entire genetic endowment – are an important events in plant evolution," Ming said. Some of the duplicated genes retain their original structure and function, and so produce more of a given gene product – a protein, for example, he said. Some gradually adapt new forms to take on new functions. If those changes are beneficial, the genes persist; if they're harmful, they disappear from the genome.

Many agricultural crops benefit from genome duplications, including banana, papaya, sugarcane, strawberry, watermelon and wheat, said Robert VanBuren, a graduate student in Ming's lab and collaborator on the study.

Although it lacks the 100 million-year-old triplication of its genome seen in most other eudicots, sacred lotus experienced a separate, whole-genome duplication about 65 million years ago, the researchers found. A large proportion of the duplicated genes (about 40 percent) have been retained, they report.

"A neat thing about the duplication is that we can look at the genes that were retained and see if they are in specific pathways," VanBuren said. The researchers found evidence that duplicated genes related to wax formation (which allows the plant to repel water and remain clean) and survival in a mineral-starved watery habitat were retained, for example.

By looking at changes in the duplicated genes, the researchers found that lotus has a slow mutation rate relative to other plants, Ming said. These traits make lotus an ideal reference plant for the study of other eudicots, the researchers said.

Editor's note: To reach Ray Ming, call 217-333-1221; email rayming@illinois.edu.

The paper, "Genome of the Long-Living Sacred Lotus (Nelumbo nucifera Gaertn.)," is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>