Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sacred lotus genome sequence enlightens scientists

13.05.2013
The sacred lotus (Nelumbo nucifera) is a symbol of spiritual purity and longevity. Its seeds can survive up to 1,300 years, its petals and leaves repel grime and water, and its flowers generate heat to attract pollinators.

Now researchers report in the journal Genome Biology that they have sequenced the lotus genome, and the results offer insight into the heart of some of its mysteries.

The sequence reveals that of all the plants sequenced so far – and there are dozens – sacred lotus bears the closest resemblance to the ancestor of all eudicots, a broad category of flowering plants that includes apple, cabbage, cactus, coffee, cotton, grape, melon, peanut, poplar, soybean, sunflower, tobacco and tomato.

The plant lineage that includes the sacred lotus forms a separate branch of the eudicot family tree, and so lacks a signature triplication of the genome seen in most other members of this family, said University of Illinois plant biology and Institute for Genomic Biology professor Ray Ming, who led the analysis with Jane Shen-Miller, a plant and biology professor at the University of California at Los Angeles (who germinated a 1,300-year-old sacred lotus seed); and Shaohua Li, director of the Wuhan Botanical Garden at the Chinese Academy of Sciences.

"Whole-genome duplications – the doubling, tripling (or more) of an organism's entire genetic endowment – are an important events in plant evolution," Ming said. Some of the duplicated genes retain their original structure and function, and so produce more of a given gene product – a protein, for example, he said. Some gradually adapt new forms to take on new functions. If those changes are beneficial, the genes persist; if they're harmful, they disappear from the genome.

Many agricultural crops benefit from genome duplications, including banana, papaya, sugarcane, strawberry, watermelon and wheat, said Robert VanBuren, a graduate student in Ming's lab and collaborator on the study.

Although it lacks the 100 million-year-old triplication of its genome seen in most other eudicots, sacred lotus experienced a separate, whole-genome duplication about 65 million years ago, the researchers found. A large proportion of the duplicated genes (about 40 percent) have been retained, they report.

"A neat thing about the duplication is that we can look at the genes that were retained and see if they are in specific pathways," VanBuren said. The researchers found evidence that duplicated genes related to wax formation (which allows the plant to repel water and remain clean) and survival in a mineral-starved watery habitat were retained, for example.

By looking at changes in the duplicated genes, the researchers found that lotus has a slow mutation rate relative to other plants, Ming said. These traits make lotus an ideal reference plant for the study of other eudicots, the researchers said.

Editor's note: To reach Ray Ming, call 217-333-1221; email rayming@illinois.edu.

The paper, "Genome of the Long-Living Sacred Lotus (Nelumbo nucifera Gaertn.)," is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>