Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s Not Easy Being Gene Suppressed

07.08.2009
Frogs around the world are dying from a fungal pathogen perhaps because they don’t realize they are sick.

In a study conducted at the University of Idaho, scientists found that the immune system of the study’s frog species failed to respond to the chytrid fungus known as Batrachochytrium dendrobatidis (Bd). In fact, it appears the fungal infection may actually suppress its victim’s immune system.

The findings are reported in a paper recently published in the Public Library of Science online edition (PLoS ONE), an interactive open-access journal for the communication of all peer-reviewed scientific and medical research.

“The biggest thing we found was a surprising lack of response by the frogs,” said Erica Bree Rosenblum, assistant professor of biological sciences and lead author of the study. “If you are hit with a deadly disease, you would expect that your body would do something about it. But we found that these frogs are not turning on immune function genes the way you would expect them to.”

Bd is an ancient fungus that only recently began killing frogs around the world. It lives inside of a frog’s skin, wreaking havoc by some unknown mechanism. Previous studies have shown that once Bd is introduced to a habitat, up to 50 percent of amphibian species and 80 percent of individuals can die within one year.

Scientists do not know how or why Bd kills its host, so Rosenblum is attacking the problem through genetics.

The study examined gene expression in the skin, liver and spleen of infected frogs of the species Silurana (Xenopus) tropicalis – a species highly susceptible to Bd – both three days after exposure and shortly before death. The skin was studied to determine what mechanisms cause frogs to die, while the liver and spleen were chosen to study the immune system’s response to the fungus.

Results found that not only are the genes related to immune response in infected frogs not turning on, but those genes are actually being suppressed.

“And that is the exact opposite of what one would expect to find,” said Rosenblum.

Besides the immune system, the study also looked at the frog’s skin to determine what processes, if any, are responsible for what amounts to a skin infection killing a vertebrate. This is a rare occurrence because, after all, humans don’t die from fungal skin conditions such as ringworm. So why should a fungal skin infection cause frogs to croak?

Though the study did not find any smoking guns, it did point to some disrupted genes in the frog’s skin; an organ that is much more important to an aquatic animal’s health than a land lover’s.

Other disrupted genes seem to affect cellular detoxification, which could make the frogs susceptible to toxins created by the fungus, the natural environment, or both.

According to Rosenblum, though this study is not good news for frogs, and only encompasses one species in a controlled environment, it is an important piece of the puzzle.

“This study is not the answer but it is a necessary first step to help us find the answer, said Rosenblum. “The next step in finding this answer involves further research on the generality of these findings in other species and other conditions.”

The research paper can be found online at:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0006494

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>