Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


So that’s why we’re allergic to sun creams

What happens to sunscreens when they are exposed to sunlight? And how is the skin affected by the degradation products that form? This has been the subject of research at the University of Gothenburg and Chalmers University of Technology that will be presented at the upcoming dermatologist conference in Gothenburg.

A growing hole in the ozone layer and a change in sunbathing habits have brought an increase in the number of cases of skin cancer worldwide. One way of dealing with this has been to advocate sunscreens, though greater use of these products has triggered an increase in contact allergy and photocontact allergy to sun protection products.

“We know that sun creams pass through the skin into our bodies, but we don’t know what effects they have on us,” says Isabella Karlsson, doctoral student at the Department of Chemistry at the University of Gothenburg’s Faculty of Science. “Many of them actually break down in the presence of sunlight. We therefore wanted to look at what can happen to the chemical sun protection agents when exposed to UV rays, and how the degradation products that form affect the skin.”

In their study, the researchers have come up with an explanation of what happens during this process.
“Arylglyoxales, one of the degradation products, turned out to be highly allergenic,” says Karlsson. “Which could explain why some people are allergic to creams that contain dibenzoylmethanes, one of the UVA-absorbing substances in sun creams.”

This has made for a better understanding of the mechanism behind photocontact allergy, which could lead to a product that does not cause allergy, and could determine which sun creams people are most likely to be sensitive to.

But their discovery is already having an impact. The healthcare system has long found it difficult to test patients with suspected photocontact allergy, but thanks to the study a new test is being developed.
“We’re just starting to work with various dermatology clinics on assessing the test,” explains Karlsson. “So more patients will be able to find out whether they have photocontact allergy, which could help them in their everyday lives and reduce the burden on the healthcare system.”


A photocontact allergic reaction results from the chemical alteration of sunscreens by sunlight, with the body’s immune system then responding with an allergic reaction. The reaction is uncommon, and the cause of the condition is generally sunscreens. The symptoms are eczema-like rashes that can itch. The treatment is to avoid the substance that causes the allergy.
For more information, please contact: 

Isabella Karlsson
tel. +46 31 786 91 08, e-mail:
Anna Börje
tel. +46 31 786 90 12, e-mail:

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>