Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So that’s why we’re allergic to sun creams

11.10.2010
What happens to sunscreens when they are exposed to sunlight? And how is the skin affected by the degradation products that form? This has been the subject of research at the University of Gothenburg and Chalmers University of Technology that will be presented at the upcoming dermatologist conference in Gothenburg.

A growing hole in the ozone layer and a change in sunbathing habits have brought an increase in the number of cases of skin cancer worldwide. One way of dealing with this has been to advocate sunscreens, though greater use of these products has triggered an increase in contact allergy and photocontact allergy to sun protection products.

“We know that sun creams pass through the skin into our bodies, but we don’t know what effects they have on us,” says Isabella Karlsson, doctoral student at the Department of Chemistry at the University of Gothenburg’s Faculty of Science. “Many of them actually break down in the presence of sunlight. We therefore wanted to look at what can happen to the chemical sun protection agents when exposed to UV rays, and how the degradation products that form affect the skin.”

In their study, the researchers have come up with an explanation of what happens during this process.
“Arylglyoxales, one of the degradation products, turned out to be highly allergenic,” says Karlsson. “Which could explain why some people are allergic to creams that contain dibenzoylmethanes, one of the UVA-absorbing substances in sun creams.”


This has made for a better understanding of the mechanism behind photocontact allergy, which could lead to a product that does not cause allergy, and could determine which sun creams people are most likely to be sensitive to.

But their discovery is already having an impact. The healthcare system has long found it difficult to test patients with suspected photocontact allergy, but thanks to the study a new test is being developed.
“We’re just starting to work with various dermatology clinics on assessing the test,” explains Karlsson. “So more patients will be able to find out whether they have photocontact allergy, which could help them in their everyday lives and reduce the burden on the healthcare system.”

PHOTOCONTACT ALLERGY AND CONTACT ALLERGY

A photocontact allergic reaction results from the chemical alteration of sunscreens by sunlight, with the body’s immune system then responding with an allergic reaction. The reaction is uncommon, and the cause of the condition is generally sunscreens. The symptoms are eczema-like rashes that can itch. The treatment is to avoid the substance that causes the allergy.
For more information, please contact: 

Isabella Karlsson
tel. +46 31 786 91 08, e-mail: isabella.karlsson@chem.gu.se
Anna Börje
tel. +46 31 786 90 12, e-mail: aborje@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>