Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RVC scientists develop safe and inexpensive alternative to antibiotics in production of biofuels and biopharmaceuticals

03.09.2008
Researchers at the Royal Veterinary College (RVC) have developed a system that eliminates the need for antibiotics and resistance genes in the engineering of industrial and medical products.

The method involves safer, less costly alternatives and is well suited for industrial production of many biofuels and biopharmaceuticals. This research has been published in the online access journal BMC Biotechnology.

Genetic engineering underpins much of biotechnology, and antibiotic selection of engineered strains is a key tool. Unfortunately, antibiotic selection methods risk spreading resistance traits, particularly as biotechnology products move into the environment and clinic. There have been alternatives, but none are satisfactory for wide application.

Gene targeting is the insertion of DNA into specific sites or genes within the genome of selected cells in order to alter gene expression for a particular purpose.

While working on gene targeting in bacteria, RVC researchers discovered that a well-known interaction between a cell membrane synthesis gene and the biocide triclosan could be exploited for strain selection. Surprisingly, triclosan selection performs better than conventional antibiotic selection.

“We think this simple technology is well suited for industrial scale fermentations that produce a range of valuable products, including bio-fuels and bio-pharmaceuticals,” said Dr Liam Good, at the Royal Veterinary College and lead researcher on the project. “More importantly, the new system is relatively safe and inexpensive, because the gene is native in all bacteria and triclosan is approved for use in many household applications.”

The research was carried out with Dr Shan Goh of the Department of Cell and Molecular Biology, Karolinska Institute, Stockholm.

Owen Morris | alfa
Further information:
http://www.rvc.ac.uk
http://www.biomedcentral.com/1472-6750/8/61/abstract

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>