Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RVC scientists develop safe and inexpensive alternative to antibiotics in production of biofuels and biopharmaceuticals

03.09.2008
Researchers at the Royal Veterinary College (RVC) have developed a system that eliminates the need for antibiotics and resistance genes in the engineering of industrial and medical products.

The method involves safer, less costly alternatives and is well suited for industrial production of many biofuels and biopharmaceuticals. This research has been published in the online access journal BMC Biotechnology.

Genetic engineering underpins much of biotechnology, and antibiotic selection of engineered strains is a key tool. Unfortunately, antibiotic selection methods risk spreading resistance traits, particularly as biotechnology products move into the environment and clinic. There have been alternatives, but none are satisfactory for wide application.

Gene targeting is the insertion of DNA into specific sites or genes within the genome of selected cells in order to alter gene expression for a particular purpose.

While working on gene targeting in bacteria, RVC researchers discovered that a well-known interaction between a cell membrane synthesis gene and the biocide triclosan could be exploited for strain selection. Surprisingly, triclosan selection performs better than conventional antibiotic selection.

“We think this simple technology is well suited for industrial scale fermentations that produce a range of valuable products, including bio-fuels and bio-pharmaceuticals,” said Dr Liam Good, at the Royal Veterinary College and lead researcher on the project. “More importantly, the new system is relatively safe and inexpensive, because the gene is native in all bacteria and triclosan is approved for use in many household applications.”

The research was carried out with Dr Shan Goh of the Department of Cell and Molecular Biology, Karolinska Institute, Stockholm.

Owen Morris | alfa
Further information:
http://www.rvc.ac.uk
http://www.biomedcentral.com/1472-6750/8/61/abstract

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>