Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Ruthenium-based Drugs Show Promise for Killing Cancer Cells

12.06.2012
A new study by University of Kentucky researchers shows how light and strained ruthenium-based drugs may be more effective at fighting cancer cells and less toxic to healthy cells than a similar and widely used drug.

Cisplatin is a common platinum-based cancer drug. But while cisplatin kills cancer cells, it also attacks healthy cells, causing debilitating side effects. Ruthenium is a rare transition metal also belonging to the platinum group of the periodic table, and the UK researchers developed two new ruthenium complexes designed to kill cancer cells while preserving healthy cells.

These complexes are inert in the dark, but when activated with light, they become up to 200 times as toxic, and up to three times as potent as cisplatin against tumor cells.

Published in the Journal of the American Chemical Society, the study examined the effects of these new complexes on lung cancer and leukemia cells. Edith Glazer, UK assistant professor of chemistry and principal investigator for the study, hopes to move these compounds forward in more biological testing soon.

"Coordination chemistry has proven to be an elegant method to rapidly synthesize a family of molecules," Glazer said. "We anticipate that this will prove advantageous in allowing us to make chemical modifications to optimize properties as needed as we move forward into animal studies."

MEDIA CONTACT: Allison Perry, (859) 323-2399 or allison.perry@uky.edu

Allison Perry | EurekAlert!
Further information:
http://www.uky.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>