Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers Chemists Develop Technology to Produce Clean-Burning Hydrogen Fuel

14.07.2014
New catalyst based on carbon nanotubes may rival cost-prohibitive platinum for reactions that split water into hydrogen and oxygen

Rutgers researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel – a fuel that could replace expensive and environmentally harmful fossil fuels.


Image: Tewodros Asefa

A new technology based on carbon nanotubes promises commercially viable hydrogen production from water.


Tewodros (Teddy) Asefa

The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules into hydrogen and oxygen. The Rutgers technology is also far more efficient than less-expensive catalysts investigated to-date. 

“Hydrogen has long been expected to play a vital role in our future energy landscapes by mitigating, if not completely eliminating, our reliance on fossil fuels,” said Tewodros (Teddy) Asefa, associate professor of chemistry and chemical biology in the School of Arts and Sciences. “We have developed a sustainable chemical catalyst that, we hope with the right industry partner, can bring this vision to life.”

Asefa is also an associate professor of chemical and biochemical engineering in the School of Engineering.

He and his colleagues based their new catalyst on carbon nanotubes – one-atom-thick sheets of carbon rolled into tubes 10,000 times thinner than a human hair.

Finding ways to make electrolysis reactions commercially viable is important because processes that make hydrogen today start with methane – itself a fossil fuel. The need to consume fossil fuel therefore negates current claims that hydrogen is a “green” fuel.

Electrolysis, however, could produce hydrogen using electricity generated by renewable sources, such as solar, wind and hydro energy, or by carbon-neutral sources, such as nuclear energy. And even if fossil fuels were used for electrolysis, the higher efficiency and better emissions controls of large power plants could give hydrogen fuel cells an advantage over less efficient and more polluting gasoline and diesel engines in millions of vehicles and other applications. 

In a recent scientific paper published in Angewandte Chemie International Edition, Asefa and his colleagues reported that their technology, called “noble metal-free nitrogen-rich carbon nanotubes,” efficiently catalyze the hydrogen evolution reaction with activities close to that of platinum. They also function well in acidic, neutral or basic conditions, allowing them to be coupled with the best available oxygen-evolving catalysts that also play crucial roles in the water-splitting reaction.

The researchers have filed for a patent on the catalyst, which is available for licensing or research collaborations through the Rutgers Office of Technology Commercialization. The National Science Foundation funded the research.

Asefa, an expert in inorganic and materials chemistry, joined the Rutgers faculty in 2009 after four years as an assistant professor at Syracuse University. Originally from Ethiopia, he is a resident of Montgomery Township, N.J. In addition to catalysis and nanocatalysis, his research interests include novel inorganic nanomaterials and nanomaterials for biological, medical biosensing and solar cell applications.

For more information, please contact Carl Blesch of Rutgers Media Relations at 848-932-0550 or cblesch@ucm.rutgers.edu

Carl Blesch | Eurek Alert!
Further information:
http://news.rutgers.edu/news/rutgers-chemists-develop-technology-produce-clean-burning-hydrogen-fuel/20140713#.U8POemGKDcs

Further reports about: Arts Engineering Hydrogen Office Technology biochemical electricity energy fuels inorganic

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>