Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers cell biologist pinpoints how RNA viruses copy themselves

RNA viruses hijack cellular enzyme to create viral replication factories on cell membranes

Nihal Altan-Bonnet, assistant professor of cell biology, Rutgers University in Newark, and her research team have made a significant new discovery about RNA (Ribonucleic acid) viruses and how they replicate themselves.

Certain RNA viruses – Poliovirus, Hepatitis C virus and Coxsackievirus – and possibly many other families of viruses copy themselves by seizing an enzyme from their host cell to create replication factories enriched in a specific lipid, explains Altan-Bonnet. Minus that lipid – phosphatidylinositol-4-phosphate (Pl4P) – these RNA viruses are not able to synthesize their viral RNA and replicate. The key structural components on cell membranes, lipids often serve as signaling molecules and docking sites for proteins.

Viral replication is the process by which virus particles make new copies of themselves within a host cell. Those copies then can go on to infect other cells. An RNA virus is a virus that has RNA, rather than DNA, as its genetic material. Many human pathogens are RNA viruses, including SARS virus, West Nile virus, HIV, and the ones Altan-Bonnet has been studying.

As reported in the May 28, 2010 issue of Cell, Altan-Bonnet and her co-researchers for the first time have uncovered that certain RNA viruses take control of a cellular enzyme to design a replication compartment on the cell's membrane filled with PI4P lipids. Those lipids, in turn, allow the RNA viruses to attract and stimulate the enzymes they need for replication. In uninfected cells, the levels of PI4P lipids are kept low, but in virally infected cells those levels increase dramatically. The findings by Altan-Bonnet and her colleagues not only open several possibilities for preventing the spread of various viral infections, but also may help to shed new light on the regulation of RNA synthesis at the cellular level and potentially on how some cancers develop.

"The goal of the virus is to replicate itself," notes Altan-Bonnet. "For its replication machines to work, the virus needs to create an ideal lipid environment which it does by hijacking a key enzyme from its host cell."

Altan-Bonnet and her team also were able to identify the viral protein (the so-called 3A protein in Poliovirus and Coxsackievirus infections) that captures and recruits the cellular enzyme (phosphatidylinositol-4-kinase III beta). Additionally, her lab was able to impede the replication process by administering a drug that blocked the activity of the cellular enzyme once it had been hijacked. Drug therapies to prevent viral replication potentially also could be targeted to prevent the hijacking of the enzyme.

Once that enzyme is hijacked, cells are prevented from normally operating their secretory pathway, the process by which they move proteins to the outside of the cell. In many cases, the impeding of that process can result in the slow death of the cell, leading to such problems as cardiac and vascular complications in those infected with the Coxsackievirus and neurological damage in those with Poliovirus.

Utilizing their recent findings, Altan-Bonnet and her team now plan to investigate PI4P dependence in other viruses as well as the role other lipids may play in different virus families. For example, the SARS virus also requires a lipid-rich environment for its replication, so her lab now is working with SARS researchers on determining what lipid is necessary for that virus's replication. In addition, they will be examining the role of lipids in regulating RNA synthesis in cells, potentially providing new insight into some of the cellular mutations that occur in cancer.

"Given that a lot of what we know about cellular processes historically comes from the study of viruses, our studies may provide insight into the novel roles lipids play in regulating the expression of genetic material in cells," notes Altan-Bonnet.

Altan-Bonnet's research into RNA replication is supported with grants from the National Science Foundation and the Busch Foundation. To learn more about Altan-Bonnet's research, visit

Helen Paxton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>