Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rudolph the red-nosed reindeer's cooling strategy revealed

27.10.2011
How exercising reindeer keep cool

Insulated in a luxuriously thick winter coat, reindeer are perfectly prepared for the gripping cold of an Arctic winter.

But the pelt doesn't just keep the cold out, it keeps the warmth in too: which is fine when the animals are resting, but what happens when they are active and generating heat? Usain Bolt would never sprint in a fur coat so how do exercising reindeer avoid overheating? Arnoldus Blix from the University of Tromsø, Norway, explains that the animals have three tactics: panting with their mouths closed to evaporate water from the nose; panting with the mouth open to evaporate water from the tongue; and activating a cooling system that selectively cools the blood supply to the brain. But how do they coordinate these different strategies for protection? Intrigued, Blix and his colleagues Lars Walløe from the University of Oslo, Norway, and Lars Folkow, also from Tromsø, decided to monitor reindeer brain temperatures, breathing rates and the blood flow through several major blood vessels in the head, to find out how active reindeer keep cool in winter.

The team publish their discovery that reindeer use three strategies to keep cool and only resort cooling their brains with a heat exchanger when their temperature becomes dangerously high in The Journal of Experimental Biology at http://jeb.biologists.org.

'Reindeer are the best animals to work with; once they trust the trainer they will do anything for you,' explains Blix. So, the team trained reindeer to trot at 9km/h on a treadmill in temperatures from 10 to 30°C to get the animals warmed up while they recorded the animals' physiological responses. In the early stages of the run their breath rate rocketed from 7breaths/min to an impressive 260breaths/min. Blix explains that the animals were inhaling chilly air through their noses and evaporating water from the mucous membranes to cool blood in the nasal sinuses before sending it back to the rest of the body through the jugular vein to keep their temperature down.

However, as the animals continued exercising and generating more heat, they switched to panting, throwing their mouths wide open and flopping their tongues out like dogs. 'The tongue is large, vascularised and well circulated,' explains Blix, and adds, 'They moisturise the tongue so you have evaporation which also takes heat away from the blood'.

Monitoring the temperature of the reindeer's brain, the team noticed that the blood flow through the animal's cooling tongue peaked when the brain's temperature reached a critically high 39°C, at which point the reindeer switched to their third tactic. They began selectively cooling the brain by diverting cooled venous blood – which came from the nose – away from the body and up into the head, where it entered a network of heat exchanging blood vessels to cool the hot arterial blood destined for the brain to protect it from overheating.

Blix admits that initially he had not thought that this strategy would work. 'Only 2% of the respiratory volume went through the nose when they resorted to open mouth panting,' he says. However, when he calculated the colossal amounts of air inhaled by the exercising animals – coupled with the low air temperatures – it was clear that the reindeers were able to inhale sufficient cold air through their noses to keep their brains cool, but only as a last resort once the other cooling tactics were no longer sufficient.

So Blix and his colleagues have discovered how heavily insulated reindeer prevent themselves from overheating and how Rudolph keeps cool every Christmas Eve.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Blix, A. S., Walløe, L. and Folkow, L. P. (2011) Regulation of brain temperature in winter-acclimatized reindeer under heat stress. J. Exp. Biol. 214, 3850-3856.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sue Chamberlain | EurekAlert!
Further information:
http://www.biologists.org
http://jeb.biologists.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>