Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rudolph the red-nosed reindeer's cooling strategy revealed

27.10.2011
How exercising reindeer keep cool

Insulated in a luxuriously thick winter coat, reindeer are perfectly prepared for the gripping cold of an Arctic winter.

But the pelt doesn't just keep the cold out, it keeps the warmth in too: which is fine when the animals are resting, but what happens when they are active and generating heat? Usain Bolt would never sprint in a fur coat so how do exercising reindeer avoid overheating? Arnoldus Blix from the University of Tromsø, Norway, explains that the animals have three tactics: panting with their mouths closed to evaporate water from the nose; panting with the mouth open to evaporate water from the tongue; and activating a cooling system that selectively cools the blood supply to the brain. But how do they coordinate these different strategies for protection? Intrigued, Blix and his colleagues Lars Walløe from the University of Oslo, Norway, and Lars Folkow, also from Tromsø, decided to monitor reindeer brain temperatures, breathing rates and the blood flow through several major blood vessels in the head, to find out how active reindeer keep cool in winter.

The team publish their discovery that reindeer use three strategies to keep cool and only resort cooling their brains with a heat exchanger when their temperature becomes dangerously high in The Journal of Experimental Biology at http://jeb.biologists.org.

'Reindeer are the best animals to work with; once they trust the trainer they will do anything for you,' explains Blix. So, the team trained reindeer to trot at 9km/h on a treadmill in temperatures from 10 to 30°C to get the animals warmed up while they recorded the animals' physiological responses. In the early stages of the run their breath rate rocketed from 7breaths/min to an impressive 260breaths/min. Blix explains that the animals were inhaling chilly air through their noses and evaporating water from the mucous membranes to cool blood in the nasal sinuses before sending it back to the rest of the body through the jugular vein to keep their temperature down.

However, as the animals continued exercising and generating more heat, they switched to panting, throwing their mouths wide open and flopping their tongues out like dogs. 'The tongue is large, vascularised and well circulated,' explains Blix, and adds, 'They moisturise the tongue so you have evaporation which also takes heat away from the blood'.

Monitoring the temperature of the reindeer's brain, the team noticed that the blood flow through the animal's cooling tongue peaked when the brain's temperature reached a critically high 39°C, at which point the reindeer switched to their third tactic. They began selectively cooling the brain by diverting cooled venous blood – which came from the nose – away from the body and up into the head, where it entered a network of heat exchanging blood vessels to cool the hot arterial blood destined for the brain to protect it from overheating.

Blix admits that initially he had not thought that this strategy would work. 'Only 2% of the respiratory volume went through the nose when they resorted to open mouth panting,' he says. However, when he calculated the colossal amounts of air inhaled by the exercising animals – coupled with the low air temperatures – it was clear that the reindeers were able to inhale sufficient cold air through their noses to keep their brains cool, but only as a last resort once the other cooling tactics were no longer sufficient.

So Blix and his colleagues have discovered how heavily insulated reindeer prevent themselves from overheating and how Rudolph keeps cool every Christmas Eve.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Blix, A. S., Walløe, L. and Folkow, L. P. (2011) Regulation of brain temperature in winter-acclimatized reindeer under heat stress. J. Exp. Biol. 214, 3850-3856.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Sue Chamberlain | EurekAlert!
Further information:
http://www.biologists.org
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>