Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rubber from dandelions / Scientists identify key components in the formation of rubber

28.04.2015

How is the rubber contained in a dandelion’s milky white fluid formed? A team led by scientists from Münster University and from the Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, (Münster branch), has now identified proteins which play a key role in the production of rubber in the plant.

Dandelions are robust and undemanding plants – from which a desirable product can be extracted: rubber. This is why dandelions have increasingly become the focus of attention of the rubber-producing industry. But how is rubber, contained in the plant’s white milky fluid, actually formed?


From dandelions a desirable product can be extracted: rubber.

WWU/Peter Grewer

There has not been any complete answer to this question yet, but a team headed by Münster University and the Fraunhofer Institute for Molecular Biology and Applied Ecology IME (Münster branch), has now identified proteins which play a key role in the production of rubber in the plant.

The milky fluid containing the rubber is produced in special cells in the dandelion. What is responsible for the formation – the biosynthesis – of the rubber is a protein complex located on the surface of so-called rubber particles. These globular particles are filled with polyisoprene, the main component of rubber, and are surrounded by a protective coating.

As the researchers have been able to demonstrate, using the example of Russian dandelion, there is one special protein (a so-called rubber transferase activator) which plays a key role. If the formation of the protein is prevented – in other words, if it is non-existent in the plant – then no rubber is formed. The scientists assume that the protein is necessary for the formation of the rubber-producing protein complex.

Their results have been published in the current online issue of the specialist journal "Nature Plants". Scientists from Munich Technical University and from York, in England, were also involved in the work. A second study, which was likewise carried out with substantial input from researchers from IME and Münster University, identifies a further important protein which plays a key role in the formation of the long polyisoprene chains. These so-called polymers give the rubber its typical properties – its elasticity and resilience.

"Dandelions have become well-known recently in particular as a result of applied research," explains head of research Dr. Christian Schulze Gronover (IME, Münster branch). "Now we are pleased to have some news again from the field of basic research: we have been able to identify no fewer than two key components of rubber biosynthesis."

It has not so far been possible to manufacture natural rubber by biotechnological means. But the possibility has been brought a step closer, say the researchers, as a result of the identification of key components in rubber synthesis. Dandelion plants which produce no rubber could also in future be used in laboratory experiments in order to find out what the role of rubber in the plants is. According to one idea under discussion, for example, it provides protection against pathogenic agents.

As Dr. Dirk Prüfer, Professor of the Biotechnology of Plants at Münster University and head of the Functional and Applied Genomics department at the IME in Münster, points out: "We were only able to achieve these research results through effective collaboration between IME and Münster University – in other words, through the intelligent linking of applications-oriented and basic research. We hope to be able to continue to expand on this model for success."

Original publications:

Janina Epping, Nicole van Deenen, Eva Niephaus, Anna Stolze, Julia Fricke, Claudia Huber, Wolfgang Eisenreich, Richard M. Twyman, Dirk Prüfer and Christian Schulze Gronover (2015): A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nature Plants, Advance Online Publication; DOI: 10.1038/nplants.2015.48

Natalie Laibach, Andrea Hillebrand, Richard M. Twyman, Dirk Prüfer and Christian Schulze Gronover (2015): Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis. The Plant Journal, Advance Online Publication; DOI: 10.1111/tpj.12836

This is a concerted press release from Münster University and Fraunhofer Institute for Molecular Biology and Applied Ecology IME. At IME, please contact Sabine Dzuck (phone: +49 241 6085-13354; mobile: +49 173 304 5723; mail: sabine.dzuck@ime.fraunhofer.de)

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-muenster.de/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>