Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB Scientists visualize simultaneous encoding of object orientation and its motion

24.03.2011
Nerve cell networks transform different information into overlaid activity patterns

Imagine sitting in a train at the railway station looking outside: Without analyzing the relative motion of object contours across many different locations at the same time, it is often difficult to decide whether it’s your train that starts moving, or the one at the opposite track. How are these diverse information conveyed simultaneously through the network of millions of activated nerve cells in the visual brain? “Neurons synchronize with different partners at different frequencies” says Dr. Dirk Jancke, Neuroscientist at the Ruhr-University in Bochum, Germany.


Visualization of how the primary visual cortex encodes both orientation and retinotopic motion of a visual object simultaneously. As a visual stimulus the scientists used a horizontal grating moving downwards on a monitor screen (sketched at most right). From left to right: The brain’s vascular surface and a 20 millisecond camera snapshot of brain activity. Dark regions represent domains in which nerve cells are active which encode the horizontal grating orientation (see pattern of red outlines). At the same time, overlaid on this patchy map, a traveling activity wave was observed moving downwards across the brain (red represents peak activity, blue depicts low amplitude). The wave thus represented the actual movement of the grating stripes independently from the orientation encoding pattern.

A new imaging technique enabled to show that such functioning results in distinct activity patterns overlaid in primary visual cortex. These patterns individually signal motion direction, speed, and orientation of object contours within the same network at the same time. Together with colleagues at the University of Osnabrück, the Bochum scientists successfully visualized such brain multiplexing using a modern real-time optical imaging method that exploits a specific voltage-sensitive dye.

Imaging with voltage-sensitive dye: A method to capture real-time brain dynamics

The dye incorporates in the brain cells’ membrane and changes fluorescence whenever these receive or send electrical signals. Hence, high resolution camera systems allow to simultaneously capture activities of millions of nerve cells across several square millimeters across the brain.

First-time visualization of grating pattern motion across the brain surface

As a stimulus the researchers used simple oriented gratings with alternating black-white stripes drifting at constant speed across a monitor screen. These stimuli have been used for more than 50 years in visual neuroscience and still are conventionally applied in medical diagnostics. However, brain activity that signals both the grating’s orientation and its motion simultaneously has not been detected so far. Such signals could now be demonstrated for the first time. Note that further computational steps including sophisticated analysis were needed before those smallest brain activity signals became visible.

Cortical mapping of object orientation

Optical imaging became state-of-the-art since it allows fine grained resolution of cortical pattern activity, so-called maps, in which local groups of active nerve cells represent grating orientation. Thereby, a particular grating orientation activates different groups of nerve cells resulting in unique patchy patterns. Their specific map layout encodes actual stimulus orientation.

Transfer of motion information through overlaid activity waves

Jancke: “Our novel imaging method furthermore captures propagating activity waves across these orientation maps. Hence, we additionally observe gratings moving in real-time across the brain. In this way, motion direction and speed can be estimated independently from orientation maps, which enables resolving ambiguities occurring in visual scenes of everyday life.” The emerging spatial-temporal patterns could then individually be received and interpreted by other brain areas. To give a picture: a radio gets a permanent stream of broadcasts simultaneously. In order to listen to a particular station one has to choose only the channel to tune. For example, a following brain area might preferentially compute an object’s orientation while others process its movement direction or speed simultaneously. In the future, the scientists hope to discover more of the brains real-time action when similar tools are used with increasing stimulus complexity: Naturalistic images are experienced so effortlessly in everyday life. Still it remains an intriguing question how the brain handles such complex data gaining a stable percept every moment in time.

Title Listing

Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011). Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55: 1763-1770. http://dx.doi.org/10.1016/j.neuroimage.2011.01.004

Contact

Dr. Dirk Jancke, Real-time Optical Imaging Group, Institut für Neuroinformatik NB 2/27, Ruhr-Universität Bochum, Universitätstr. 150, D-44780 Bochum, Germany, Tel: +49 234 32 27845, Fax: +49 234 32 14209, E-Mail: jancke@neurobiologie.rub.de, http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/brain_multiplexing.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>