Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB Scientists visualize simultaneous encoding of object orientation and its motion

24.03.2011
Nerve cell networks transform different information into overlaid activity patterns

Imagine sitting in a train at the railway station looking outside: Without analyzing the relative motion of object contours across many different locations at the same time, it is often difficult to decide whether it’s your train that starts moving, or the one at the opposite track. How are these diverse information conveyed simultaneously through the network of millions of activated nerve cells in the visual brain? “Neurons synchronize with different partners at different frequencies” says Dr. Dirk Jancke, Neuroscientist at the Ruhr-University in Bochum, Germany.


Visualization of how the primary visual cortex encodes both orientation and retinotopic motion of a visual object simultaneously. As a visual stimulus the scientists used a horizontal grating moving downwards on a monitor screen (sketched at most right). From left to right: The brain’s vascular surface and a 20 millisecond camera snapshot of brain activity. Dark regions represent domains in which nerve cells are active which encode the horizontal grating orientation (see pattern of red outlines). At the same time, overlaid on this patchy map, a traveling activity wave was observed moving downwards across the brain (red represents peak activity, blue depicts low amplitude). The wave thus represented the actual movement of the grating stripes independently from the orientation encoding pattern.

A new imaging technique enabled to show that such functioning results in distinct activity patterns overlaid in primary visual cortex. These patterns individually signal motion direction, speed, and orientation of object contours within the same network at the same time. Together with colleagues at the University of Osnabrück, the Bochum scientists successfully visualized such brain multiplexing using a modern real-time optical imaging method that exploits a specific voltage-sensitive dye.

Imaging with voltage-sensitive dye: A method to capture real-time brain dynamics

The dye incorporates in the brain cells’ membrane and changes fluorescence whenever these receive or send electrical signals. Hence, high resolution camera systems allow to simultaneously capture activities of millions of nerve cells across several square millimeters across the brain.

First-time visualization of grating pattern motion across the brain surface

As a stimulus the researchers used simple oriented gratings with alternating black-white stripes drifting at constant speed across a monitor screen. These stimuli have been used for more than 50 years in visual neuroscience and still are conventionally applied in medical diagnostics. However, brain activity that signals both the grating’s orientation and its motion simultaneously has not been detected so far. Such signals could now be demonstrated for the first time. Note that further computational steps including sophisticated analysis were needed before those smallest brain activity signals became visible.

Cortical mapping of object orientation

Optical imaging became state-of-the-art since it allows fine grained resolution of cortical pattern activity, so-called maps, in which local groups of active nerve cells represent grating orientation. Thereby, a particular grating orientation activates different groups of nerve cells resulting in unique patchy patterns. Their specific map layout encodes actual stimulus orientation.

Transfer of motion information through overlaid activity waves

Jancke: “Our novel imaging method furthermore captures propagating activity waves across these orientation maps. Hence, we additionally observe gratings moving in real-time across the brain. In this way, motion direction and speed can be estimated independently from orientation maps, which enables resolving ambiguities occurring in visual scenes of everyday life.” The emerging spatial-temporal patterns could then individually be received and interpreted by other brain areas. To give a picture: a radio gets a permanent stream of broadcasts simultaneously. In order to listen to a particular station one has to choose only the channel to tune. For example, a following brain area might preferentially compute an object’s orientation while others process its movement direction or speed simultaneously. In the future, the scientists hope to discover more of the brains real-time action when similar tools are used with increasing stimulus complexity: Naturalistic images are experienced so effortlessly in everyday life. Still it remains an intriguing question how the brain handles such complex data gaining a stable percept every moment in time.

Title Listing

Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011). Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55: 1763-1770. http://dx.doi.org/10.1016/j.neuroimage.2011.01.004

Contact

Dr. Dirk Jancke, Real-time Optical Imaging Group, Institut für Neuroinformatik NB 2/27, Ruhr-Universität Bochum, Universitätstr. 150, D-44780 Bochum, Germany, Tel: +49 234 32 27845, Fax: +49 234 32 14209, E-Mail: jancke@neurobiologie.rub.de, http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/brain_multiplexing.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>