Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB Scientists visualize simultaneous encoding of object orientation and its motion

24.03.2011
Nerve cell networks transform different information into overlaid activity patterns

Imagine sitting in a train at the railway station looking outside: Without analyzing the relative motion of object contours across many different locations at the same time, it is often difficult to decide whether it’s your train that starts moving, or the one at the opposite track. How are these diverse information conveyed simultaneously through the network of millions of activated nerve cells in the visual brain? “Neurons synchronize with different partners at different frequencies” says Dr. Dirk Jancke, Neuroscientist at the Ruhr-University in Bochum, Germany.


Visualization of how the primary visual cortex encodes both orientation and retinotopic motion of a visual object simultaneously. As a visual stimulus the scientists used a horizontal grating moving downwards on a monitor screen (sketched at most right). From left to right: The brain’s vascular surface and a 20 millisecond camera snapshot of brain activity. Dark regions represent domains in which nerve cells are active which encode the horizontal grating orientation (see pattern of red outlines). At the same time, overlaid on this patchy map, a traveling activity wave was observed moving downwards across the brain (red represents peak activity, blue depicts low amplitude). The wave thus represented the actual movement of the grating stripes independently from the orientation encoding pattern.

A new imaging technique enabled to show that such functioning results in distinct activity patterns overlaid in primary visual cortex. These patterns individually signal motion direction, speed, and orientation of object contours within the same network at the same time. Together with colleagues at the University of Osnabrück, the Bochum scientists successfully visualized such brain multiplexing using a modern real-time optical imaging method that exploits a specific voltage-sensitive dye.

Imaging with voltage-sensitive dye: A method to capture real-time brain dynamics

The dye incorporates in the brain cells’ membrane and changes fluorescence whenever these receive or send electrical signals. Hence, high resolution camera systems allow to simultaneously capture activities of millions of nerve cells across several square millimeters across the brain.

First-time visualization of grating pattern motion across the brain surface

As a stimulus the researchers used simple oriented gratings with alternating black-white stripes drifting at constant speed across a monitor screen. These stimuli have been used for more than 50 years in visual neuroscience and still are conventionally applied in medical diagnostics. However, brain activity that signals both the grating’s orientation and its motion simultaneously has not been detected so far. Such signals could now be demonstrated for the first time. Note that further computational steps including sophisticated analysis were needed before those smallest brain activity signals became visible.

Cortical mapping of object orientation

Optical imaging became state-of-the-art since it allows fine grained resolution of cortical pattern activity, so-called maps, in which local groups of active nerve cells represent grating orientation. Thereby, a particular grating orientation activates different groups of nerve cells resulting in unique patchy patterns. Their specific map layout encodes actual stimulus orientation.

Transfer of motion information through overlaid activity waves

Jancke: “Our novel imaging method furthermore captures propagating activity waves across these orientation maps. Hence, we additionally observe gratings moving in real-time across the brain. In this way, motion direction and speed can be estimated independently from orientation maps, which enables resolving ambiguities occurring in visual scenes of everyday life.” The emerging spatial-temporal patterns could then individually be received and interpreted by other brain areas. To give a picture: a radio gets a permanent stream of broadcasts simultaneously. In order to listen to a particular station one has to choose only the channel to tune. For example, a following brain area might preferentially compute an object’s orientation while others process its movement direction or speed simultaneously. In the future, the scientists hope to discover more of the brains real-time action when similar tools are used with increasing stimulus complexity: Naturalistic images are experienced so effortlessly in everyday life. Still it remains an intriguing question how the brain handles such complex data gaining a stable percept every moment in time.

Title Listing

Onat S, Nortmann N, Rekauzke S, König P, Jancke D (2011). Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging. Neuroimage 55: 1763-1770. http://dx.doi.org/10.1016/j.neuroimage.2011.01.004

Contact

Dr. Dirk Jancke, Real-time Optical Imaging Group, Institut für Neuroinformatik NB 2/27, Ruhr-Universität Bochum, Universitätstr. 150, D-44780 Bochum, Germany, Tel: +49 234 32 27845, Fax: +49 234 32 14209, E-Mail: jancke@neurobiologie.rub.de, http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://homepage.ruhr-uni-bochum.de/Dirk.Jancke/brain_multiplexing.html

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>