Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RUB researchers clarify catalysis mechanism of cell growth protein Ras

PNAS: Proteins bring tension to the phosphate chain

Proteins accelerate certain chemical reactions in cells by several orders of magnitude. The molecular mechanism by which the Ras protein accelerates the cleavage of the molecule GTP and thus slows cell growth is described by biophysicists at the Ruhr-Universität Bochum led by Prof. Dr. Klaus Gerwert in the Online Early Edition of the journal PNAS.

Using a combination of infrared spectroscopy and computer simulations, they showed that Ras puts a phosphate chain under tension to such an extent that a phosphate group can very easily detach - the brake for cell growth. Mutated Ras is involved in tumour formation, because this reaction slows down and the brake for cell growth fails. "Our findings could help to develop small molecules that restore the Ras proteins to the right speed", says Prof. Gerwert. "Such molecules would then be interesting for molecular cancer therapy."

On/off: the Ras code

The Ras protein switches the cell growth off by detaching a phosphate group from the small bound guanosine triphosphate, GTP for short. GTP has three interlinked phosphate groups. If it is present in water, the third phosphate group can split off spontaneously - even without the help of the protein Ras. This process is very slow though. Ras accelerates the splitting by a magnitude of five, a second protein, called GAP, by a further magnitude of five. What causes this acceleration has now been found out by the Bochum team.

How Ras spans the phosphate chain

Ras brings the chain of three phosphate groups at the GTP into a certain shape. It turns the third and second phosphate group to each other so that the chain is tensioned. "Like winding up a spring in a toy car by turning a screw", explains Prof. Gerwert. "Ras is the screw, the phosphate groups form the spring." The protein GAP tensions the spring further by also turning the first phosphate group against the second. In this way, the GTP gets into such a high-energy state that the third phosphate group can easily detach from the chain - like when the toy car drives off spontaneously after winding up the spring.

Infrared spectroscopy: high resolution, but only to be interpreted indirectly

The results were obtained by the Bochum researchers using the time-resolved fourier transform infrared spectroscopy (FTIR) developed at the Institute of Biophysics. With this technique, the scientists track reactions and interactions of proteins with high spatial and temporal resolution; much more precisely than using a microscope. "However, the spectroscopy does not deliver such nice pictures as a microscope, but only very complex infrared spectra", explains PD Dr. Carsten Kötting. "Like a secret code that has to be deciphered."

Quantum chemical simulations

To this end, Till Rudack simulated the protein responses on modern computing clusters and calculated the corresponding infrared spectra. Due to the enormous computational effort, large molecules such as a complete protein cannot currently be reliably described using these so-called quantum mechanical simulations. Therefore, the researchers limited their analysis to GTP and the part of the Ras or GAP protein that interacts directly with GTP. They described the rest of the proteins with a less elaborate molecular dynamics simulation. "When bringing together all the different simulations, it is easy to be led astray", says Till Rudack. "Therefore you have to check the quality of the results by comparing the simulated with the measured infrared spectra." If the spectra obtained with both techniques match, the structure of proteins can be determined to an accuracy of a millionth of a micrometre. This was the case in the Bochum study.

Potential uses for cancer therapy

Molecular cancer therapy is already used successfully with diseases such as chronic myeloid leukaemia (CLM) in the form of the drug Gleevec. Molecules with a similar effect against the mutated Ras protein have not yet been found. "Since we are now able to investigate the reactions of the Ras protein with significantly better resolution, new hope is forming that it will be possible to defuse the mutated molecule using drugs such as Gleevec and restore the rhythm of the cell" says Gerwert.

Bibliographic record

T. Rudack, F. Xia, J. Schlitter, C. Kötting, K. Gerwert (2012): Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations, PNAS, doi: 10.1073/pnas.1204333109

Figure online

A figure related to this press release can be found online at:

Further information

Prof. Dr. Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24461

Till Rudack, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-28363

Click for more

Department of Biophysics

Freely available article

Editor: Dr. Julia Weiler

Prof. Dr. Klaus Gerwert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>