Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rowan University Tackles Challenges of Reducing Carbon Footprint of Drug Manufacturing

22.07.2010
Rowan University faculty and students have teamed with Pfizer Global Engineering and Manufacturing personnel to investigate green approaches to drug manufacture. This is the second time Rowan has partnered with Pfizer to investigate methods to reduce the carbon footprint of pharmaceutical plant operations.

This year, the Rowan team has worked with scientists and engineers from Peapack, N.J., and the Kalamazoo, Mich., plant where drugs such as the widely prescribed SOLU-MEDROL® are made along with other highly specialized medicines.

The Rowan team has been working with several Pfizer personnel, including Frank J. Urbanski (director, Pfizer Global Engineering), Joseph W. Geiger (manager API engineering), and Donald J. Knoechel (senior principal scientist).

The team has collaborated to analyze the economic viability and to quantify the environmental benefits of investing in a small solvent recovery system, as an alternative to incineration, for addressing smaller-volume waste streams. Solvents often represent the primary component of waste from the production of active pharmaceutical ingredients (APIs), used in medicinal formulations.

According to Urbanski, “There are economic and environmental benefits when Pfizer recovers solvent for re-use, especially when expensive solvents and large volumes are involved. Indeed, Pfizer has been recovering solvents for many decades at its various manufacturing facilities. As we seek to improve our conservation efforts and reduce our carbon footprint, one challenge faced is how best to deal with numerous small-volume waste streams from multi-product facilities, when existing solvent recovery equipment may be too large to be practical.”

Solvent recovery is a routine practice in the pharmaceutical industry when it is technically and economically viable for the particular waste stream. Capital investment in the required piping, tank farms and recovery equipment is more easily justified when dealing with large volumes, high-cost solvents and high equipment-utilization rates and when solvents from multiple products can be pooled together – i.e., they don’t require segregation by product. The use of recovered solvents, and the pooling of solvents, must be appropriately qualified to assure product quality and avoid cross contamination. Economic justification to recover small-volume, “non-poolable,” and intermittently generated waste streams remains challenging but a potential recovery opportunity.

Drs. Mariano J. Savelski and C. Stewart Slater, both Rowan chemical engineering professors, are leading this research effort with a team of chemical engineering students: Joseph Hankins (Blairstown, N.J.), Christopher Mazurek (Jackson, N.J.), James Peterson (Jackson, N.J.), Michael Raymond (Burlington Township, N.J.), and Andrew Tomaino (Middleton, N.J.).

The Rowan team performed a case study on several waste streams being generated at an API synthesis building at the Pfizer Kalamazoo plant. The goal was to investigate those streams that could be most easily recovered with traditional separation and purification processes. As a first step in that analysis, the recovery of acetonitrile solvent from a waste stream in the selamectin synthesis was considered. Selamectin is the active ingredient in the veterinary drug REVOLUTION®. This stream was initially chosen due to the relative high cost (and value) of acetonitrile and the ability to separate acetonitrile from acetone.

Rowan designed a small-scale distillation, solvent-recovery system, and the proposed operation compared with the current waste-disposal practice. To increase the economic feasibility of a potential capital investment and improve the environmental footprint further, the Rowan team evaluated the proposed design for use with the other waste streams in the facility. The simulation included isopropanol solvent recovery from the manufacture of nelfinavir, the active ingredient in the antiretroviral drug VIRACEPT®, used in the treatment of the human immunodeficiency virus (HIV). The study also examined toluene recovery from hydrocortisone manufacture (used in several drug products for relief of inflammation).

“The case study estimates the environmental impacts and economics, using life-cycle assessment, associated with the proposed improvement using various computer routines,” Savelski said.

Knoechel said, “From a plant perspective, the Rowan team has given us some valuable estimates to use in evaluating our solvent use and disposal practices. The team’s unique life-cycle assessment capability helps us understand where we can have the most impact on reducing our greenhouse gas emissions.”

The case study for the three drugs showed that 732,000 kg/yr of life cycle emissions, of which 677,000 kg/yr are CO2, could be reduced through using the solvent recovery system. This results from not having to manufacture the virgin solvent as well as from a reduction in waste disposal. The study also projects significant operating cost benefit. The CO2 reductions are equivalent to the amount of emissions saved by not driving cars 1.4 million miles in a year.

The Rowan group presented its work at the 14th Green Chemistry and Engineering Conference in Washington, D.C., in June.

Both Pfizer and Rowan recently have been recognized for their green chemistry and engineering achievements. Pfizer’s La Jolla (Calif.) research and development facility won a Clean Air Champions award from the County of San Diego in 2009. Rowan’s Savelski and Slater won the EPA’s Environmental Quality Award in 2009 for their efforts in educating both academia and industry in the field of green engineering. Rowan University’s prior work with Pfizer resulted in recommendations to improve the solvent-recovery operations in the manufacture of celecoxib, the active ingredient in the arthritis pain medication CELEBREX®.

Pfizer and Rowan continue to discuss further green engineering partnerships.

*Celebrex®, Revolution®, Solu-Medrol® and Viracept® are registered trademarks of Pfizer Inc. and its affiliated companies

Patricia Quigley | Newswise Science News
Further information:
http://www.rowan.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>