Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rowan University Tackles Challenges of Reducing Carbon Footprint of Drug Manufacturing

22.07.2010
Rowan University faculty and students have teamed with Pfizer Global Engineering and Manufacturing personnel to investigate green approaches to drug manufacture. This is the second time Rowan has partnered with Pfizer to investigate methods to reduce the carbon footprint of pharmaceutical plant operations.

This year, the Rowan team has worked with scientists and engineers from Peapack, N.J., and the Kalamazoo, Mich., plant where drugs such as the widely prescribed SOLU-MEDROL® are made along with other highly specialized medicines.

The Rowan team has been working with several Pfizer personnel, including Frank J. Urbanski (director, Pfizer Global Engineering), Joseph W. Geiger (manager API engineering), and Donald J. Knoechel (senior principal scientist).

The team has collaborated to analyze the economic viability and to quantify the environmental benefits of investing in a small solvent recovery system, as an alternative to incineration, for addressing smaller-volume waste streams. Solvents often represent the primary component of waste from the production of active pharmaceutical ingredients (APIs), used in medicinal formulations.

According to Urbanski, “There are economic and environmental benefits when Pfizer recovers solvent for re-use, especially when expensive solvents and large volumes are involved. Indeed, Pfizer has been recovering solvents for many decades at its various manufacturing facilities. As we seek to improve our conservation efforts and reduce our carbon footprint, one challenge faced is how best to deal with numerous small-volume waste streams from multi-product facilities, when existing solvent recovery equipment may be too large to be practical.”

Solvent recovery is a routine practice in the pharmaceutical industry when it is technically and economically viable for the particular waste stream. Capital investment in the required piping, tank farms and recovery equipment is more easily justified when dealing with large volumes, high-cost solvents and high equipment-utilization rates and when solvents from multiple products can be pooled together – i.e., they don’t require segregation by product. The use of recovered solvents, and the pooling of solvents, must be appropriately qualified to assure product quality and avoid cross contamination. Economic justification to recover small-volume, “non-poolable,” and intermittently generated waste streams remains challenging but a potential recovery opportunity.

Drs. Mariano J. Savelski and C. Stewart Slater, both Rowan chemical engineering professors, are leading this research effort with a team of chemical engineering students: Joseph Hankins (Blairstown, N.J.), Christopher Mazurek (Jackson, N.J.), James Peterson (Jackson, N.J.), Michael Raymond (Burlington Township, N.J.), and Andrew Tomaino (Middleton, N.J.).

The Rowan team performed a case study on several waste streams being generated at an API synthesis building at the Pfizer Kalamazoo plant. The goal was to investigate those streams that could be most easily recovered with traditional separation and purification processes. As a first step in that analysis, the recovery of acetonitrile solvent from a waste stream in the selamectin synthesis was considered. Selamectin is the active ingredient in the veterinary drug REVOLUTION®. This stream was initially chosen due to the relative high cost (and value) of acetonitrile and the ability to separate acetonitrile from acetone.

Rowan designed a small-scale distillation, solvent-recovery system, and the proposed operation compared with the current waste-disposal practice. To increase the economic feasibility of a potential capital investment and improve the environmental footprint further, the Rowan team evaluated the proposed design for use with the other waste streams in the facility. The simulation included isopropanol solvent recovery from the manufacture of nelfinavir, the active ingredient in the antiretroviral drug VIRACEPT®, used in the treatment of the human immunodeficiency virus (HIV). The study also examined toluene recovery from hydrocortisone manufacture (used in several drug products for relief of inflammation).

“The case study estimates the environmental impacts and economics, using life-cycle assessment, associated with the proposed improvement using various computer routines,” Savelski said.

Knoechel said, “From a plant perspective, the Rowan team has given us some valuable estimates to use in evaluating our solvent use and disposal practices. The team’s unique life-cycle assessment capability helps us understand where we can have the most impact on reducing our greenhouse gas emissions.”

The case study for the three drugs showed that 732,000 kg/yr of life cycle emissions, of which 677,000 kg/yr are CO2, could be reduced through using the solvent recovery system. This results from not having to manufacture the virgin solvent as well as from a reduction in waste disposal. The study also projects significant operating cost benefit. The CO2 reductions are equivalent to the amount of emissions saved by not driving cars 1.4 million miles in a year.

The Rowan group presented its work at the 14th Green Chemistry and Engineering Conference in Washington, D.C., in June.

Both Pfizer and Rowan recently have been recognized for their green chemistry and engineering achievements. Pfizer’s La Jolla (Calif.) research and development facility won a Clean Air Champions award from the County of San Diego in 2009. Rowan’s Savelski and Slater won the EPA’s Environmental Quality Award in 2009 for their efforts in educating both academia and industry in the field of green engineering. Rowan University’s prior work with Pfizer resulted in recommendations to improve the solvent-recovery operations in the manufacture of celecoxib, the active ingredient in the arthritis pain medication CELEBREX®.

Pfizer and Rowan continue to discuss further green engineering partnerships.

*Celebrex®, Revolution®, Solu-Medrol® and Viracept® are registered trademarks of Pfizer Inc. and its affiliated companies

Patricia Quigley | Newswise Science News
Further information:
http://www.rowan.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>