Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Roving ‘Sonic hedgehog’ gene may change scientists’ understanding of limb growth

Sonic hedgehog, a gene that plays a crucial rule in the positioning and growth of limbs, fingers and toes, has been confirmed in an unexpected place in the embryos of developing mice — the layer of cells that creates the skin.

Named for a video game character, Sonic hedgehog describes both a gene and the protein it produces in the body. Its study is important to increase understanding of human birth defects.

It was thought to be exclusively present in the cell layer that builds bone and muscle, called the mesoderm. But University of Florida Genetics Institute researchers have discovered that Sonic hedgehog is also at work in mice limb buds in what is known as the ectoderm, the cell layer that gives rise to the skin in vertebrates.

Finding Sonic hedgehog in this layer of cells is loosely akin to discovering that yeast has crept from the batter to the frosting, where it has the surprising effect of limiting how much the cake will rise. More literally, instead of causing appendages to grow, Sonic hedgehog seems to act as a failsafe mechanism to keep additional digits from developing.

“Sonic hedgehog protein determines how your limbs form, and why your pinky is at the bottom of your hand and your thumb is at the top,” said Brian D. Harfe, an associate professor of molecular genetics and microbiology at the UF College of Medicine. “But what’s been previously published is only part of the picture. We determined that Sonic hedgehog signaling is required in the ectoderm to have normal digit formation. Get rid of it, and an extra digit forms.”

In this case, when scientists disrupted Sonic hedgehog signaling in a small region of the limb buds of embryonic mice, an additional digit began to arise in what would be the mouse paw.

The discovery, to appear online in this week’s Proceedings of the National Academy of Sciences, suggests that Sonic hedgehog’s role in the growth of appendages is far more complex than originally thought. Developmental biologists may have to rethink established theories about how limbs are patterned in vertebrates — an effort that could provide insight into human birth defects.

“We used technology where a viral protein seeks out specific sequences of DNA,” said Cortney M. Bouldin, a graduate student in the Interdisciplinary Program in Biomedical Sciences in the department of molecular genetics and microbiology. “We concentrated on disabling a protein essential for Sonic hedgehog signaling. Although it has been removed from the limb before, we wanted to specifically remove it from the ectoderm. When we did that, in the latter stages of development, we saw extra cartilage and the early beginnings of another digit.”

Sonic hedgehog signaling in the ectoderm of limb buds may act as a buffering system that prevents unneeded growth, Bouldin said.

The UF research was sparked by studies of gene activity in the limb buds of mice by William J. Scott, a professor of pediatrics at the University of Cincinnati. Scott used a microarray experiment to examine gene expression levels in the ectoderm of mice limb buds, finding activity that could not be possible without the presence of Sonic hedgehog.

UF researchers were able to advance this investigation from cell studies to developing mice embryos by knocking out gene expression in a small region of the ectodermal layer. It allowed them to observe early limb development in the absence of Sonic hedgehog signaling.

“The view had been if you reduce signaling, if anything you would get fewer fingers,” said Scott, who did not participate in the UF research. “We now know we can’t disregard Sonic hedgehog signaling in the ectoderm. It still has its predominant effect in the tissue where it is made, but it does something more than we thought it did previously. When we try to understand problems that arise with limb growth in humans, we will be able to examine those possibilities.”

Harfe said the next phase of the work will be to observe what happens when Sonic hedgehog signaling is disrupted through larger segments of the ectodermal layer. Ultimately, researchers hope the work will lead to quality of life improvements for people.

“We would like to repair limb defects in humans and enhance regeneration of limbs, helping people who might cut off fingers in an accident, for example,” Harfe said.

The work was funded by the UF College of Medicine.

Media Contact
Pastor,, 352-273-5815

John Pastor | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>