Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roundworm unlocks pancreatic cancer pathway

20.01.2011
C. elegans model shows how RAS oncogene switching determines a cell's fate

The National Cancer Institute estimates that more than 43,000 Americans were diagnosed with pancreatic cancer last year and more than 36,000 died from the disease. Despite advances in genetic science showing that the Ras oncogene is mutated in virtually all pancreatic cancers, scientists have been frustrated by the complexity of the signaling pathways in humans, which make it difficult to pinpoint potential therapeutic targets.

In a study published today in the Cell Press journal Developmental Cell, a team of researchers led by Channing Der, PhD, Distinguished Professor of Pharmacology at UNC-Chapel Hill, took a step back to a simpler organism – a common roundworm – and made a discovery about how the Ras oncogene chooses a signaling pathway and how the consequences of that choice play out in cellular development – a key issue in cancer, which is characterized by uncontrolled cell growth.

Der, who is also a member of UNC Lineberger Comprehensive Cancer Center, explains, "In humans the cell signaling pathways are very complex; there are more than 20 different downstream partners beyond the two proteins we study – Raf and RalGEF – that Ras can choose to interact with. In C. elegans, there is only one of each protein. That made it easier for us to identify how Ras chooses a partner to 'dance' with and what are the critical events in the subsequent cell development that promote cancer."

"We found an elegant mechanism by which Ras switches partners and showed that the choice leads to very different fates for the cell. Now we can go back to the human pancreatic cancer cell and ask whether similar mechanisms are at work in determining how Ras causes pancreatic cancer," he adds.

Scientists often study simpler organisms to tease out genetic and cellular activity that might be almost impossible to map in humans. "Worms' cells actually share a great deal of functional overlap with human cells. However, while there may be one mechanism in a simple organism like a worm, there are multiple mechanisms at work in humans. It's a great thing for us as people, because there is a great deal of redundancy in our biological systems that helps them self-repair and function better, but it makes it a lot harder to study what's going on at a basic level," Der notes.

"If this signaling works in a similar way in humans, the C. elegans model may be very powerful for helping us find new therapeutic targets for pancreatic cancer," he concludes.

In addition to Der, the team included graduate student Tanya Zand, and Assistant Professor David Reiner, PhD, both of UNC's Department of Pharmacology.

The project was supported by the National Institutes of Health.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>