Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roundworm quells obesity and related metabolic disorders

26.04.2013
Researchers at the University of Maryland School of Medicine, Baltimore, have shown in a mouse model that infection with nematodes (also known as roundworms) can not only combat obesity but ameliorate related metabolic disorders. Their research is published ahead of print online in the journal Infection and Immunity.

Gastrointestinal nematodes infect approximately 2 billion people worldwide, and some researchers believe up until the 20th century almost everyone had worms. In developed countries there is a decreasing incidence of nematode infection but a rising prevalence of certain types of autoimmunity, suggesting a relationship between the two.

Nematode infection has been purported to have therapeutic effects and currently clinical trials are underway to examine worms as a treatment for diseases associated with the relevant cytokines, including inflammatory bowel disease, multiple sclerosis, and allergies.

In the study researchers tested the effect of nematode infection on mice fed a high-fat diet. Infected mice of normal girth gained 15 percent less weight than those that were not infected. Mice that were already obese when infected lost roughly 13 percent of their body weight within 10 days. Infection also drastically lowered fasting blood glucose, a risk factor for diabetes, and reduced fatty liver disease, decreasing liver fat by ~25 percent, and the weight of the liver by 30 percent.

The levels of insulin and leptin also dropped, "indicating that the mice restored their sensitivities to both hormones," says corresponding author Aiping Zhao of the University of Maryland School of Medicine, Baltimore. Leptin moderates appetite. As with too much insulin, too high a level of leptin results in insensitivity, thus contributing to obesity and metabolic syndrome, Zhao explains.

The mechanism of the moderation of these hormones "was associated with a parasite-induced reduction in glucose absorption in the intestine, reduced liver triglycerides, and an increase in the population of cells called "alternatively activated macrophages," which regulate glucose metabolism and inflammation," says coauthor Joe Urban of the United States Department of Agriculture. Some of these changes involved "a protein called interleukin-13 and related intracellular signaling mechanisms," he says. "This suggests that there are immune related shifts in metabolism that can alter expression of obesity and related metabolic syndrome."

The incidence of obesity has been climbing dramatically, worldwide. It is a key risk factor for many metabolic diseases, including diabetes, hypertension, and heart disease. Recent studies indicate that it is accompanied by chronic low-grade inflammation in adipose tissues, causing the release of proinflammatory cytokines and chemokines that contribute to the development of cardiovascular disease and metabolic syndrome.

Parasitic nematode infection induces a marked elevation in host immune Th2-cells and related type 2 cytokines which, besides combating the infection, also have potent anti-inflammatory activity, according to the report.

A copy of the manuscript can be found online at http://bit.ly/asmtip0413d. Formal publication is scheduled for the June 2013 issue of Infection and Immunity.

(Z. Yang, V. Grinchuk, A. Smith, B. qin, J.A. Bohl, R. Sun, L. Notari, Z. Zhang, H. Sesaki, J.F. Urban, Jr., T. Shea-Donohue, A. Zhao, 2013. Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity. Infect. Immun. Published ahead of print 18 March 2013, doi:10.1128/IAI.00053-13.)

Infection and Immunity is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Infection Medicine immunity metabolic syndrome mouse model risk factor roundworm

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>