Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting round gene loss

01.11.2010
A naturally occurring back-up system in plants to produce metabolites compensates for experimentally induced gene loss

Genes ‘knocked out’ experimentally in metabolic networks of the model plant species, Arabidopsis thaliana, are compensated for by duplicate genes or alternative synthetic pathways, according to research led by Kousuke Hanada of the RIKEN Plant Science Center, Yokohama1.

Gene knockouts often have no obvious effects on an organism’s biological characteristics or ‘phenotype’, because their function is compensated for by duplicate genes or alternative pathways allow the effects of gene loss to be circumvented.

For metabolic products, studies on these mechanisms have been limited to yeast. Hanada’s team therefore assessed the relative importance of these mechanisms in Arabidopsis. “Arabidopsis suited our purposes beautifully because many gene knockout mutants have been generated and many of its metabolic networks are known,” explains Hanada.

To study the robustness of Arabidopsis metabolic networks to gene loss the researchers knocked out individually some 2,000 highly expressed genes and then quantified 35 metabolic products in the seeds of the mutant plants by high-throughput analysis.

They compared what happened to production of metabolites when genes with and without duplicates were knocked out. The metabolites assessed included 17 essential amino acids (primary metabolites) found in all organisms, and 18 secondary metabolites called glucosinolates produced specifically by Arabidopsis and its relatives.

Knocking out either single-copy genes or genes with only distantly related ‘duplicates’ tended to have larger metabolic effects than those caused by knocking out genes having closer copies resulting from more recent gene duplication events. “Only recently duplicated genes appear to play a significant role in functional compensation of metabolites in Arabidopsis,” says Hanada.

By analyzing the structure of the Arabidopsis metabolic network, the researchers found that primary metabolites are more often synthesized by alternative biochemical pathways than are secondary metabolites.

Primary metabolites are more likely than secondary metabolites to be essential for plant survival. Surprisingly, however, the researchers found that duplicate genes more often compensated functionally for experimentally induced gene loss in the synthesis of secondary metabolites than in that of primary metabolites. This contrasted with their previous work that showed that, in general, more severe phenotypic effects in Arabidopsis tend to be better compensated for by gene duplication than less severe effects2.

Hanada suggests that the existence of multiple alternative pathways for synthesizing primary metabolites makes these particular Arabidopsis networks highly robust to the loss of individual genes.

“Our findings shed valuable new light on the gene–phenotype relationship, laying the groundwork for new theoretical models in systems biology,” says Hanada.

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science CenterJournal information

1. Hanada, K., Sawada, Y., Kuromori, T., Klausnitzer, R., Saito, K., Toyoda, T., Shinozaki, K., Li, W-H. & Hirai, M.Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Molecular Biology and Evolution Advance Access, published 24 August 2010 (doi: 10.1093/molbev/msq204).

2. Hanada, K., Kuromori, T., Myoga, F., Toyoda, T., Li, W-H. & Shinozaki, K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biology and Evolution 1, 409–414 (2009).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6433
http://www.researchsea.com

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>