Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rot's unique wood degrading machinery to be harnessed for better biofuels production

09.02.2009
An international team led by scientists from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and the U.S. Department of Agriculture Forest Service, Forest Products Laboratory (FPL) have translated the genetic code that explains the complex biochemical machinery making brown-rot fungi uniquely destructive to wood.

The same processes that provide easier access to the energy-rich sugar molecules bound up in the plant's tenacious architecture are leading to innovations for the biofuels industry. The research, conducted by more than 50 authors, is reported in the February 4 online edition of the Proceedings of the National Academy of Sciences (PNAS).

Among the challenges to more cost-effective production of biofuels from cellulosic biomass—the fibrous material of whole plants—is to find effective means to work around the polymer lignin, the scaffolding that endows the plant's architecture with rigidity and protection from pests. By doing so, the organic compound cellulose—the long chain of glucose (sugar) units can be unbound, broken down, fermented, and distilled into liquid transportation fuel. This is where the destructive capabilities of rot come in.

"The microbial world represents a little explored yet bountiful resource for enzymes that can play a central role in the deconstruction of plant biomass—an early step in biofuel production," said Eddy Rubin, Director of the DOE JGI, where the genome sequencing was conducted. "The brown-rot Postia placenta's genome offers us a detailed inventory of the biomass-degrading enzymes that this and other fungi possess."

Rubin pointed to a complementary strategy that DOE and its Bioenergy Research Centers are pursuing of targeting a new generation of plants—perennial grasses and fast-growing trees such as poplar—bred specifically as biomass for biofuels. Among the desirable characteristics of biofuel "feedstocks" is the ease by which they can be deconstructed. Traditionally, harsh chemicals and expensive high-heat treatments have been employed. In parallel with the development of improved feedstocks is finding just the right mix of enzymes to get the most out of converting biomass into fuel.

"Nature offers some guidance here," said Dan Cullen, FPL scientist and one of the senior authors on the PNAS paper. "Postia has, over its evolution, shed the conventional enzymatic machinery for attacking plant material. Instead, the evidence suggests that it utilizes an arsenal of small oxidizing agents that blast through plant cell walls to depolymerize the cellulose. This biological process opens a door to more effective, less-energy intensive and more environmentally-sound strategies for more lignocellulose deconstruction."

Few organisms in nature can efficiently breakdown lignin into smaller, more manageable chemical units amenable to biofuels production. The exceptions are the basidiomycete fungi, which include white-rot and brown-rot—wood-decayers and essential caretakers of carbon in forest systems. In addition, brown-rot fungi have significant economic impact because their ability to wreak havoc with wooden structures. A significant portion of the U.S. timber harvest is diverted toward replacing such decayed materials.

Unlike white-rot fungi, previously characterized by DOE JGI and FPL, which simultaneously degrades lignin and cellulose, brown-rot rapidly depolymerizes the cellulose in wood without removing the lignin. Up until this study, the underlying genetics and biochemical mechanisms were poorly understood.

DNA sequence is the first step in the central dogma of molecular biology first articulated over 50 years ago by Francis Crick—the transfer of information from DNA to RNA, which in turn, is translated into protein products, such as enzymes. Postia's genome sequence was also the first step in the process that the scientific team employed to home in on the subset of data, the transcriptome, that encodes the specific enzyme activity, and the secretome, the products exported from the cell.

"For the first time we have been able to compare the genetic blue prints of brown-rot, white-rot and soft-rot fungi which play a major role in the carbon cycle of our planet," said Randy Berka, another one of the study's senior authors and Director of Integrative Biology, at Novozymes, Inc., of Davis, Calif. "Such comparisons will increase our understanding of the diverse mechanisms and chemistries involved in lignocellulose degradation. This type of information may empower industrial biotechnologists to devise new strategies to enhance efficiencies and reduce costs associated with biomass conversion for renewable fuels and chemical intermediates."

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov
http://www.jgi.doe.gov/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>