Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The roots of food security

27.01.2010
Max Planck scientists discovered how certain hormones control aspects of root branching in plants

Roots are the most underestimated parts of a plant, even though they are crucial for water and nutrient uptake and consequently growth. In a world of changing water availability and an ever-increasing human population, it will therefore be crucial to understand how root development is controlled in plants. Scientists at the Max Planck Institute for Developmental Biology in Tübingen, Germany, now described that the plant hormone auxin together with an increased cell cycle activity leads to a boost in root branching in the common thale cress Arabidopsis thaliana. In addition, they showed that two proteins that are crucial for embryo development also play a critical role in root branching. These results could be used to raise plants that are fast-growing even in dry and nutrient-poor soils (PNAS, January 25 - 29, 2010).

About two hundred years ago, Thomas Robert Malthus predicted that sooner or later a continuously growing world population would be confronted with famine, disease, and widespread mortality. Today, the world is facing the major challenge of providing food security for an ever-growing world population, which will require an increase in food production that is exceeding the one from previous decades. To achieve this, a new green revolution is needed, which will result in high yield plants that grow in soils with very low potential.

Astoundingly, when one thinks about a plant, mainly flowers, leaves, fruits and seeds come to mind, but one rarely considers the roots - the part hidden below the soil - as vital parts. Nevertheless, the root system, which consists of a main root that makes lateral branches, is without doubt the most important part of the plant, since without roots, a plant cannot take up nutrients and water, cannot stay upright, and cannot interact with advantageous symbiotic organisms.

Building on previous observations, a group of scientists in the Department of Gerd Jürgens at the Max Planck Institute for Developmental Biology, together with scientists in Belgium, described the necessity of combining increased cell cycle activity and auxin, which is one of the major plant hormones, to give rise to an increase in root branching. Their study object was the common thale cress Arabidopsis thaliana. In addition, they showed that two proteins that are crucial for embryo development also play a critical role in root branching. Furthermore, they could for the first time demonstrate that the response to the hormone auxin takes place in discrete, successive steps.

"This knowledge is an important step towards an improved and increased root system that can support the required increase in plant yield, which will guarantee food security and which will support the role of plants as an energy source", said Ive De Smet. "Specifically, since water, nitrogen and phosphorus availability are often limiting, a root system that is able to more efficiently take up and store nutrients will allow the use of less fertilizer and will permit plants to survive in dry, less arable areas", the biologist added.

Original work:

Ive De Smet, Steffen Lau, Ute Voß, Steffen Vanneste, René Benjamins, Eike H. Rademacher, Alexandra Schlereth, Bert De Rybel, Valya Vassileva, Wim Grunewald, Mirande Naudts, Mitchell P. Levesque, Jasmin S. Ehrismann, Dirk Inzé, Christian Luschnig, Philip N. Benfey, Dolf Weijers, Marc C. E. Van Montagu, Malcolm J. Bennett, Gerd Jürgens, Tom Beeckmann
Bimodular auxin response controls organogenesis in Arabidopsis.
PNAS Early Edition, January 25 - 29, 2010, www.pnas.org/cgi/doi/10.1073/pnas.0915001107

Contact:

Dr. Ive De Smet
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 601-1301
E-mail: ive.desmet@tuebingen.mpg.de
Dr. Susanne Diederich (Press and Public Relations)
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 601-333
E-mail: presse@tuebingen.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>