Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room Temperature Liquid Porphyrins

24.03.2010
Potential Optical Limiters

Porphyrins have received a great deal of attention in the scientific community owing to their useful application in a wide variety of areas, such as the treatment of cancer and systems that mimic photosynthesis.

A common shortcoming observed in using porphyrins arises from their tendency to form stacks and aggregates, as is common for planar aromatic systems, which results in low solubility, high crystallinity, and high melting point.

In the journal Chemistry—An Asian Journal, a team led by Daniel T. Gryko, based at the Polish Academy of Sciences (Warsaw, Poland), describe the design and synthesis of liquid porphyrin-based compounds that, after suitable structural modifications, may be used as optical limiters.

The study focuses on a homologous series of meso-substituted A4-porphyrins bearing aryl groups with long alkoxy chains. The alkyl chain length ranges from 8 to 18 carbon atoms. The synthesis of these compounds involves a high-yielding two-step process using commercially available starting materials. All porphyrins synthesized are found to be highly soluble in organic solvents. Differential scanning calorimetry (DSC) is used to investigate the thermal properties of the series of porphyrins.

"The behavior of the compounds in the DSC thermograms is very sensitive to the alkoxy chain lengths present in the molecule" writes Gryko. A gradual decrease in the temperature for the crystalline-to-isotropic-liquid phase transition is observed as the length of the alkoxy side chains increase. A minimum is observed for the decycloxy compound, with subsequent elongation of the alkyl chain causing an increase in the melting point. 5,10,15,20-Tetrakis[3,4,5-tri(undecyloxy)phenyl]porphyrin and its decyloxy analogue are both observed to be liquids at room temperature and are shown to have melting points of -24°C and -55°C, respectively.

Such compounds are unprecedented, and these results provide significant insight into the possibilities for the design and synthesis of room temperature liquid porphyrins in a very simple and efficient way. It is known that liquid porphyrins maintain the same spectroscopic features as their solid analogues, therefore, this discovery not only opens the way to design porphyrins possessing such substituents in optical limiting devices but also allows its broader use in other applications where liquidity or very high solubility are desirable.

Author: Daniel T. Gryko, Polish Academy of Sciences, Warsaw (Poland), http://www.icho.edu.pl/ENG/groups/10/10.htm

Title: Meso-Substituted Liquid Porphyrins

Chemistry—An Asian Journal 2010, 5, No. 4, Permalink: http://dx.doi.org/10.1002/asia.200900693

Daniel T. Gryko | Angewandte Chemie
Further information:
http://www.icho.edu.pl/ENG/groups/10/10.htm
http://www.chemasianj.org

Further reports about: Academy Liquid melting point room temperature

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>