Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Room Temperature Liquid Porphyrins

24.03.2010
Potential Optical Limiters

Porphyrins have received a great deal of attention in the scientific community owing to their useful application in a wide variety of areas, such as the treatment of cancer and systems that mimic photosynthesis.

A common shortcoming observed in using porphyrins arises from their tendency to form stacks and aggregates, as is common for planar aromatic systems, which results in low solubility, high crystallinity, and high melting point.

In the journal Chemistry—An Asian Journal, a team led by Daniel T. Gryko, based at the Polish Academy of Sciences (Warsaw, Poland), describe the design and synthesis of liquid porphyrin-based compounds that, after suitable structural modifications, may be used as optical limiters.

The study focuses on a homologous series of meso-substituted A4-porphyrins bearing aryl groups with long alkoxy chains. The alkyl chain length ranges from 8 to 18 carbon atoms. The synthesis of these compounds involves a high-yielding two-step process using commercially available starting materials. All porphyrins synthesized are found to be highly soluble in organic solvents. Differential scanning calorimetry (DSC) is used to investigate the thermal properties of the series of porphyrins.

"The behavior of the compounds in the DSC thermograms is very sensitive to the alkoxy chain lengths present in the molecule" writes Gryko. A gradual decrease in the temperature for the crystalline-to-isotropic-liquid phase transition is observed as the length of the alkoxy side chains increase. A minimum is observed for the decycloxy compound, with subsequent elongation of the alkyl chain causing an increase in the melting point. 5,10,15,20-Tetrakis[3,4,5-tri(undecyloxy)phenyl]porphyrin and its decyloxy analogue are both observed to be liquids at room temperature and are shown to have melting points of -24°C and -55°C, respectively.

Such compounds are unprecedented, and these results provide significant insight into the possibilities for the design and synthesis of room temperature liquid porphyrins in a very simple and efficient way. It is known that liquid porphyrins maintain the same spectroscopic features as their solid analogues, therefore, this discovery not only opens the way to design porphyrins possessing such substituents in optical limiting devices but also allows its broader use in other applications where liquidity or very high solubility are desirable.

Author: Daniel T. Gryko, Polish Academy of Sciences, Warsaw (Poland), http://www.icho.edu.pl/ENG/groups/10/10.htm

Title: Meso-Substituted Liquid Porphyrins

Chemistry—An Asian Journal 2010, 5, No. 4, Permalink: http://dx.doi.org/10.1002/asia.200900693

Daniel T. Gryko | Angewandte Chemie
Further information:
http://www.icho.edu.pl/ENG/groups/10/10.htm
http://www.chemasianj.org

Further reports about: Academy Liquid melting point room temperature

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>