Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rong Li Lab probes mechanism of asymmetry in meiotic cell division

09.10.2008
The Stowers Institute's Rong Li Lab has characterized a mechanism that allows for asymmetrical cell division during meiosis in oocytes.

By tracking chromosome movement in live mouse oocytes, the team discovered that chromosomes can recruit to their vicinity a protein called formin-2. This protein allows the oocyte to retain the majority of the cytoplasm – a requirement for embryonic development after fertilization – while the other daughter cell (called a polar body) resulting from the asymmetric division gets only a minimal amount and subsequently dies.

The work was published this week in the advance online publication of Nature Cell Biology.

Formin-2 is an actin-nucleating protein that can promote the formation of actin filaments around the chromosomes. Actin filaments undergo dynamic elongation and shortening and, in the process, push the chromosomes towards the outer edge of the oocyte. After the chromosomes reach the periphery, the actin filaments orient the cell division plane so that most of the cytoplasm required to sustain the earliest stages of development stays with the daughter cell that retains the identy of the oocyte.

"This work revealed the general mechanism by which the actin cytoskeleton drives chromosome movement in mammalian meiotic oocytes," said Hongbin Li, Ph.D., Senior Research Associate and lead author on the publication. "Our findings will enable us to carry out even more detailed dissection of the molecular components and mechanisms."

"Infertility and birth defects are often related to problems during oocyte meiotic cell divisions," said Rong Li, Ph.D., Investigator and senior author on the paper. "Failure in the chromosome movement will lead to failed oocyte maturation and infertility. These findings provide an important step toward a better understanding of the process of meiotic divisions and how actin generates the force to power intra-cellular movements."

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.stowers-institute.org/labs/RongLiLab.asp

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>