Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel role of protein in generating amyloid-beta peptide

29.04.2009
A defining hallmark of Alzheimer's disease is the accumulation of the amyloid â protein (Aâ), otherwise known as "senile plaques," in the brain's cortex and hippocampus, where memory consolidation occurs.

Researchers at the University of California, San Diego School of Medicine have identified a novel protein which, when over-expressed, leads to a dramatic increase in the generation of Aâ.

Their findings, which indicate a potential new target to block the accumulation of amyloid plaque in the brain, will be published in the May 1 issue of the Journal of Biological Chemistry.

"The role of the multi-domain protein, RANBP9, suggests a possible new therapeutic target for Alzheimer's disease," said David E. Kang, PhD, assistant professor of neurosciences at UC San Diego and director of this study.

The neurotoxic protein Aâ is derived when the amyloid precursor protein (APP) is "cut" by two enzymes, â-secretase (or BACE) and ã-secretase (or Presenilin complex.) However, inhibiting these enzymes in order to stop the amyloid cascade has many negative side effects, as these enzymes also have various beneficial uses in brain cells. So the researchers looked for an alternative way to block the production of amyloid beta.

In order for cleavage to occur, the APP needs to travel to cholesterol-enriched sites within the cell membrane called RAFTS, where APP interacts with the two enzymes. It is this contact that the researchers sought to block.

Kang explains that the researchers identified the RANBP9 protein by studying low density lipoprotein receptor-related protein (LRP), a protein that rapidly shuttles Aâ out of the brain and across the blood-brain barrier to the body, where it breaks down into harmless waste products. A small segment of LRP can also stimulate Aâ generation, and the scientists narrowed this segment down to a 37-amino-acid stretch that can lead to changes in Aâ.

"RANBP9 is one of the proteins we identified that interacted with this LRP segment, but one that had never before been associated with disease-related neuronal changes," said Kang. "We discovered that this protein interacts with three components involved in Aâ generation – LRP, APP and BACE1 – and appears to 'scaffold' them into a structure."

Kang explained that these three components must come together to result in the first cut or cleaving that leads to production of Aâ. To test this, the scientists knocked out RANBP9 in the cell, and discovered that 60% less Aâ was produced.

"This unique factor enhances the production of beta amyloid," said Kang. "Inhibiting the RANBP9 protein may offer an alternative approach to therapy, by preventing contact between APP and the enzyme that makes the cut essential to produce amyloid plaques." The researchers' next step is to verify these findings in animal models.

According to the Alzheimer's Association, an estimated 5.3 million people have Alzheimer's disease in the United States alone, and a new case is diagnosed every seven seconds.

Madepalli K. Lakshmana, Ph.D., the study's first author, added that "this study is the first to identify RANBP9 as a target to potentially inhibit the movement of APP to RAFTS so that amyloid beta peptide generation can be prevented. As such, a small molecule drug that can reduce the RANBP9 protein levels could offer an effective treatment for Alzheimer's disease."

Additional contributors to the study include Il-Sang Yoon, Eunice Chen and Edward H. Koo, of UC San Diego Department of Neurosciences; and Elizabetta Bianchi from the Institut Pasteur in Paris.

This work was supported in part by the American Health Assistance Foundation, the Alzheimer's Association, and the National Institutes of Health, National Institute on Aging.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>