Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel role of protein in generating amyloid-beta peptide

29.04.2009
A defining hallmark of Alzheimer's disease is the accumulation of the amyloid â protein (Aâ), otherwise known as "senile plaques," in the brain's cortex and hippocampus, where memory consolidation occurs.

Researchers at the University of California, San Diego School of Medicine have identified a novel protein which, when over-expressed, leads to a dramatic increase in the generation of Aâ.

Their findings, which indicate a potential new target to block the accumulation of amyloid plaque in the brain, will be published in the May 1 issue of the Journal of Biological Chemistry.

"The role of the multi-domain protein, RANBP9, suggests a possible new therapeutic target for Alzheimer's disease," said David E. Kang, PhD, assistant professor of neurosciences at UC San Diego and director of this study.

The neurotoxic protein Aâ is derived when the amyloid precursor protein (APP) is "cut" by two enzymes, â-secretase (or BACE) and ã-secretase (or Presenilin complex.) However, inhibiting these enzymes in order to stop the amyloid cascade has many negative side effects, as these enzymes also have various beneficial uses in brain cells. So the researchers looked for an alternative way to block the production of amyloid beta.

In order for cleavage to occur, the APP needs to travel to cholesterol-enriched sites within the cell membrane called RAFTS, where APP interacts with the two enzymes. It is this contact that the researchers sought to block.

Kang explains that the researchers identified the RANBP9 protein by studying low density lipoprotein receptor-related protein (LRP), a protein that rapidly shuttles Aâ out of the brain and across the blood-brain barrier to the body, where it breaks down into harmless waste products. A small segment of LRP can also stimulate Aâ generation, and the scientists narrowed this segment down to a 37-amino-acid stretch that can lead to changes in Aâ.

"RANBP9 is one of the proteins we identified that interacted with this LRP segment, but one that had never before been associated with disease-related neuronal changes," said Kang. "We discovered that this protein interacts with three components involved in Aâ generation – LRP, APP and BACE1 – and appears to 'scaffold' them into a structure."

Kang explained that these three components must come together to result in the first cut or cleaving that leads to production of Aâ. To test this, the scientists knocked out RANBP9 in the cell, and discovered that 60% less Aâ was produced.

"This unique factor enhances the production of beta amyloid," said Kang. "Inhibiting the RANBP9 protein may offer an alternative approach to therapy, by preventing contact between APP and the enzyme that makes the cut essential to produce amyloid plaques." The researchers' next step is to verify these findings in animal models.

According to the Alzheimer's Association, an estimated 5.3 million people have Alzheimer's disease in the United States alone, and a new case is diagnosed every seven seconds.

Madepalli K. Lakshmana, Ph.D., the study's first author, added that "this study is the first to identify RANBP9 as a target to potentially inhibit the movement of APP to RAFTS so that amyloid beta peptide generation can be prevented. As such, a small molecule drug that can reduce the RANBP9 protein levels could offer an effective treatment for Alzheimer's disease."

Additional contributors to the study include Il-Sang Yoon, Eunice Chen and Edward H. Koo, of UC San Diego Department of Neurosciences; and Elizabetta Bianchi from the Institut Pasteur in Paris.

This work was supported in part by the American Health Assistance Foundation, the Alzheimer's Association, and the National Institutes of Health, National Institute on Aging.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>