Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for Natural Killers!

28.08.2008
Scientists at the University of York have discovered a new role for a population of white blood cells, which may lead to improved treatments for chronic infections and cancer.

Natural Killer (or NK) cells are abundant white blood cells that were recognised over 30 years ago as being able to kill cancer cells in the test tube. Since that time, a role for NK cells in activating other white blood cells (including ‘T’ lymphocytes and phagocytes) and in directing how the immune system responds to a wide range of infections has also been established.

Because of these properties, NK have been widely regarded as being of benefit in the fight against cancer and infection, and methods to increase NK cell activity underpin a range of new experimental anti-cancer drugs and anti-infectives.

However, a research team in the University’s Centre for Immunology and Infection and led by Professor Paul Kaye, has now demonstrated that NK cells also make chemicals that inhibit immune responses.

The research, published in the latest issue of the journal Immunity, has shown that in an experimental model of the tropical disease visceral leishmaniasis, too many NK cells can actually make the disease worse. They have identified that NK cells produce a chemical called interleukin-10 that can counteract many of the otherwise beneficial effects of these cells.

Professor Kaye said: “Other researchers have suggested in the past that NK cells might not always be good for you, but we now have the first direct evidence that this can actually be the case. Although we have worked on an infectious disease, the same is likely to be true for NK cells in cancer. So, in practical terms, it means that we need to consider more carefully exactly how we use therapies that affect NK cells, to maximize their beneficial role.”

The new findings also open up the potential of developing new drugs that specifically target the beneficial properties of NK cells, and which leave their inhibitory properties switched off. Conversely, in autoimmune diseases, where the immune system is too active, it may be possible to stimulate NK cells to turn it off.

David Garner | alfa
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/admin/presspr/pressreleases/naturalkillers.htm

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>