Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of gene regulator in skeletal muscles demonstrated

03.06.2011
Fast muscles, such as the thigh muscle in a sprinter, deliver energy quickly but fatigue quickly. Slow muscles, such as the soleus muscle in the lower calf, are less forceful but important for posture and endurance.

Researchers from the University of Texas Southwestern Medical Center and Virginia Tech have discovered one gene regulator that maintains the fast muscle type and inhibits the development of a slow muscle type.

The research was posted in the Proceedings of the National Academy of Sciences' online early edition on June 1 in the article, "Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6," by Daniel Quiat of UT Southwestern, Kevin Voelker of Virginia Tech, Jimin Pei and Nick V. Grishin of UT Southwestern, Robert Grange of Virginia Tech, and Rhonda Bassel-Duby and Eric N. Olson of UT Southwestern.

"Based on previous studies by our group and others, we knew that a gene regulator called Sox6 promotes development of fast muscle in the embryo," said Olson, professor of molecular biology. "But the function of Sox6 in adult muscle was unknown."

By studying adult mice that lacked Sox6 in fast muscles, the researchers observed that fast muscle took on the performance attributes of slow muscles.

Virginia Tech's role in the research project was to measure muscle performance. "We demonstrated experimentally that there were functional changes that supported the development of slow muscle," said Grange, associate professor of human nutrition, food, and exercise in the College of Agriculture and Life Sciences. At Virginia Tech, he worked with Voelker, a postdoctoral associate in the department.

"The most obvious change is the speed at which muscle can shorten," said Grange. "Fast muscle shortens quickly; but, in the absence of Sox6, our measurements showed that fast muscle shortened more slowly and the muscle was less fatigued after contracting for several minutes. Both of these muscle performance changes demonstrated that a fast muscle that lacked Sox6 became more like a slow muscle."

"Skeletal muscles can adapt based on the stress imposed," explains Grange. "For example, if you lift weights, your muscles become stronger; if you run long distances, your muscles become less fatigued. What we don't yet know fully is how adaptations occur at the gene level and protein level in response to these different stresses. The current study is an important step to understand how muscle adaptation occurs."

Although applications of the new information are distant, Grange points out, "The more you know about how the body works, the easier it is to keep it healthy."

"We might be able to manipulate gene regulators by training in a certain way. We don't know what that is, but that is one of the objectives. From a muscle disease perspective, there may be characteristics that lead back to the proteins that control adaptations, such as Sox6," said Grange.

"You cannot have adaptations in the muscle unless there are changes in the genes turned on and those turned off. The genes turned on produce the proteins responsible for the muscle adaptation" he said. "The most exciting aspect of the study was that we clearly demonstrated changes in muscle function from a fast type to a slow type of skeletal muscle that was dependent on the absence of Sox6."

Link to the article: http://www.pnas.org/content/early/2011/05/31/1107413108.abstract

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>