Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of the cellular entry point of anthrax identified

03.12.2012
Researchers at the University of Geneva, Switzerland, demonstrate that the receptors that bind the toxin of this bacterium control how cell division is oriented

Anthrax uses a receptor on the surface of cells to inject its lethal toxins. However, the physiological function of this receptor, named Anthrax Toxin Receptor 2a (Antxr2a), remained unknown until now. A team led by Marcos Gonzalez-Gaitan, a professor at the University of Geneva (UNIGE), Switzerland, in collaboration with Gisou van der Goot at EPFL (École Polytechnique Fédérale de Lausanne), reveals that Antxr2a actually plays a role in embryonic development, orienting cell division along a specific plane, which is a prelude to the formation of future tissues and organs.

At the cellular level, this receptor exerts traction on the system that allows chromosomes to separate to opposite poles, the mitotic spindle, to position it along the plane of division. These results are presented in the journal Nature Cell Biology.

Anthrax is a particularly virulent germ once a person is infected by inhaling its spores. The severity of symptoms, which affect various organs, is mainly due to bacterial toxins which are lethal to cells. It is by attempting to understand how the bacillus' toxins enter cells that the Antxr2a receptor was discovered. Otherwise, its physiological role would not have been identified at present.

A cap of proteins indicates the plane of division
During animal development, the orientation of cell division along a specific plane is important for the organization of the different tissues and the generation of cellular diversity. This orientation is provided by the position of the mitotic spindle in the cell that is about to divide. This temporary assembly of microtubules forms an actual spindle between opposite poles of the cell in order to guide the migration of each set of chromosomes.

"When the cell receives an external signal to initiate its division, a cascade of biochemical events is launched to transmit the message to the interior of the cell and have it carried out. We knew that an external signal, a protein called Wnt, was necessary to properly position the mitotic spindle, but knew nothing of the intracellular messengers involved," explains Marcos Gonzalez-Gaitan, Professor in the Departments of Biochemistry and Molecular Biology at the University of Geneva.

This has now been accomplished. The scientist and his group have established the complete sequence of intracellular events allowing the mitotic spindle to align itself along the general plane of division. They conducted their experiments on zebrafish embryos, a model system in developmental studies. "Once Wnt binds to the cell membrane, different molecular agents prompt the formation of a layer of filamentous proteins along the cell membrane, at the site of the future plane of division," explains Irinka Castanon, first author of the article.

The anthrax receptor used as a control lever
This internal 'cap' associates itself in turn with the Antxr2a receptors, known to bind the anthrax toxin. The accumulation of these receptors will thus form a second layer, superimposed on the first. Everything is now in place for the final phase: "The Antxr2a receptors recruit in turn 'motor' proteins capable of attaching themselves to the mitotic spindle and pulling it towards the internal cap," states Marcos Gonzalez-Gaitan. Motor proteins probably act by travelling back up along the cap's filaments, allowing the alignment of the spindle with the plane of cell division.

In mammals, the Antxr2a receptor is also involved in the formation and proliferation of blood vessels. "It is therefore possible that the role of this receptor in the orientation of cell division is not restricted solely to embryonic development," states the professor, who is a member of two Swiss National Research Programs: Frontiers in Genetics, and Chemical Biology.

Marcos Gonzalez-Gaitan | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>