Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of the cellular entry point of anthrax identified

03.12.2012
Researchers at the University of Geneva, Switzerland, demonstrate that the receptors that bind the toxin of this bacterium control how cell division is oriented

Anthrax uses a receptor on the surface of cells to inject its lethal toxins. However, the physiological function of this receptor, named Anthrax Toxin Receptor 2a (Antxr2a), remained unknown until now. A team led by Marcos Gonzalez-Gaitan, a professor at the University of Geneva (UNIGE), Switzerland, in collaboration with Gisou van der Goot at EPFL (École Polytechnique Fédérale de Lausanne), reveals that Antxr2a actually plays a role in embryonic development, orienting cell division along a specific plane, which is a prelude to the formation of future tissues and organs.

At the cellular level, this receptor exerts traction on the system that allows chromosomes to separate to opposite poles, the mitotic spindle, to position it along the plane of division. These results are presented in the journal Nature Cell Biology.

Anthrax is a particularly virulent germ once a person is infected by inhaling its spores. The severity of symptoms, which affect various organs, is mainly due to bacterial toxins which are lethal to cells. It is by attempting to understand how the bacillus' toxins enter cells that the Antxr2a receptor was discovered. Otherwise, its physiological role would not have been identified at present.

A cap of proteins indicates the plane of division
During animal development, the orientation of cell division along a specific plane is important for the organization of the different tissues and the generation of cellular diversity. This orientation is provided by the position of the mitotic spindle in the cell that is about to divide. This temporary assembly of microtubules forms an actual spindle between opposite poles of the cell in order to guide the migration of each set of chromosomes.

"When the cell receives an external signal to initiate its division, a cascade of biochemical events is launched to transmit the message to the interior of the cell and have it carried out. We knew that an external signal, a protein called Wnt, was necessary to properly position the mitotic spindle, but knew nothing of the intracellular messengers involved," explains Marcos Gonzalez-Gaitan, Professor in the Departments of Biochemistry and Molecular Biology at the University of Geneva.

This has now been accomplished. The scientist and his group have established the complete sequence of intracellular events allowing the mitotic spindle to align itself along the general plane of division. They conducted their experiments on zebrafish embryos, a model system in developmental studies. "Once Wnt binds to the cell membrane, different molecular agents prompt the formation of a layer of filamentous proteins along the cell membrane, at the site of the future plane of division," explains Irinka Castanon, first author of the article.

The anthrax receptor used as a control lever
This internal 'cap' associates itself in turn with the Antxr2a receptors, known to bind the anthrax toxin. The accumulation of these receptors will thus form a second layer, superimposed on the first. Everything is now in place for the final phase: "The Antxr2a receptors recruit in turn 'motor' proteins capable of attaching themselves to the mitotic spindle and pulling it towards the internal cap," states Marcos Gonzalez-Gaitan. Motor proteins probably act by travelling back up along the cap's filaments, allowing the alignment of the spindle with the plane of cell division.

In mammals, the Antxr2a receptor is also involved in the formation and proliferation of blood vessels. "It is therefore possible that the role of this receptor in the orientation of cell division is not restricted solely to embryonic development," states the professor, who is a member of two Swiss National Research Programs: Frontiers in Genetics, and Chemical Biology.

Marcos Gonzalez-Gaitan | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>