Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The role of the cellular entry point of anthrax identified

Researchers at the University of Geneva, Switzerland, demonstrate that the receptors that bind the toxin of this bacterium control how cell division is oriented

Anthrax uses a receptor on the surface of cells to inject its lethal toxins. However, the physiological function of this receptor, named Anthrax Toxin Receptor 2a (Antxr2a), remained unknown until now. A team led by Marcos Gonzalez-Gaitan, a professor at the University of Geneva (UNIGE), Switzerland, in collaboration with Gisou van der Goot at EPFL (École Polytechnique Fédérale de Lausanne), reveals that Antxr2a actually plays a role in embryonic development, orienting cell division along a specific plane, which is a prelude to the formation of future tissues and organs.

At the cellular level, this receptor exerts traction on the system that allows chromosomes to separate to opposite poles, the mitotic spindle, to position it along the plane of division. These results are presented in the journal Nature Cell Biology.

Anthrax is a particularly virulent germ once a person is infected by inhaling its spores. The severity of symptoms, which affect various organs, is mainly due to bacterial toxins which are lethal to cells. It is by attempting to understand how the bacillus' toxins enter cells that the Antxr2a receptor was discovered. Otherwise, its physiological role would not have been identified at present.

A cap of proteins indicates the plane of division
During animal development, the orientation of cell division along a specific plane is important for the organization of the different tissues and the generation of cellular diversity. This orientation is provided by the position of the mitotic spindle in the cell that is about to divide. This temporary assembly of microtubules forms an actual spindle between opposite poles of the cell in order to guide the migration of each set of chromosomes.

"When the cell receives an external signal to initiate its division, a cascade of biochemical events is launched to transmit the message to the interior of the cell and have it carried out. We knew that an external signal, a protein called Wnt, was necessary to properly position the mitotic spindle, but knew nothing of the intracellular messengers involved," explains Marcos Gonzalez-Gaitan, Professor in the Departments of Biochemistry and Molecular Biology at the University of Geneva.

This has now been accomplished. The scientist and his group have established the complete sequence of intracellular events allowing the mitotic spindle to align itself along the general plane of division. They conducted their experiments on zebrafish embryos, a model system in developmental studies. "Once Wnt binds to the cell membrane, different molecular agents prompt the formation of a layer of filamentous proteins along the cell membrane, at the site of the future plane of division," explains Irinka Castanon, first author of the article.

The anthrax receptor used as a control lever
This internal 'cap' associates itself in turn with the Antxr2a receptors, known to bind the anthrax toxin. The accumulation of these receptors will thus form a second layer, superimposed on the first. Everything is now in place for the final phase: "The Antxr2a receptors recruit in turn 'motor' proteins capable of attaching themselves to the mitotic spindle and pulling it towards the internal cap," states Marcos Gonzalez-Gaitan. Motor proteins probably act by travelling back up along the cap's filaments, allowing the alignment of the spindle with the plane of cell division.

In mammals, the Antxr2a receptor is also involved in the formation and proliferation of blood vessels. "It is therefore possible that the role of this receptor in the orientation of cell division is not restricted solely to embryonic development," states the professor, who is a member of two Swiss National Research Programs: Frontiers in Genetics, and Chemical Biology.

Marcos Gonzalez-Gaitan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>