Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocking the death dance

11.10.2010
Identification of the mechanism that triggers suicide in dissociated human stem cells should assist their development as therapeutics

A RIKEN-led team of molecular biologists has determined why human embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells undergo apoptosis, or programmed cell death, when separated from each other. The finding should allow more efficient culturing of human stem cells, making them easier to maintain, more flexible to handle, and generally improving their survival.

At present, human ESCs, unlike those derived from mice, must be cultured in clumps, which makes them difficult to manipulate. When they lose contact with neighboring cells, human ESCs immediately go into apoptosis.

The research team, led by Yoshiki Sasai from the RIKEN Center for Developmental Biology in Kobe, and including members from Kyoto University, showed that this apoptotic response could be countered by application of an inhibitor of the enzyme ROCK (Rho-dependent protein kinase). Now, using a combination of live-cell imaging and laboratory analysis, the team has elucidated the onset and progress of dissociation-induced apoptosis1.

They found that within a few hours of separation, human ESCs began blebbing—a process whereby the membrane spontaneously bulges in finger-like projections causing the cells to jiggle around. Blebbing occurs when the membrane breaks away from the internal cytoskeleton, and can vary in its duration and severity. In this case, blebbing lasted for hours and inevitably ended with the cell bursting. The researchers dubbed it the death dance, and traced its onset to hyperactivation of myosin, a contractile protein associated with cell movement.

By studying the levels of ROCK after dissociation, as well as the regulation of its activity by the compounds with which it interacts, Sasai and colleagues determined that myosin hyperactivation—hence the blebbing and apoptosis—is caused directly by ROCK. It can be suppressed by the myosin inhibitor, blebbistatin. Further, the whole process is triggered by loss of intercellular contact, and regulated by a compound known as Abr.

The molecular mechanism that the researchers have unraveled should be susceptible to manipulation, potentially allowing human ESCs to be separated and handled without risking their certain death. Interestingly, they found that the difference in susceptibility to apoptosis of dissociated human and mouse ESCs had nothing to do with species, but could be attributed to the stage of development from which the parent stem cells were derived.

“We are now planning further work to understand the detailed mechanism of Abr activation,” says Sasai. “Another question we wish to study is why cells die upon myosin hyperactivation.”

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

1. Ohgushi, M., Matsumura, M., Eiraku, M., Murakami, K., Aramaki, T., Nishiyama, A., Muguruma, K., Nakano, T., Suga, H., Ueno, M., et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7, 225–239 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6410
http://www.researchsea.com

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>