Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rockefeller Scientists discover new compound that rids cells of Alzheimer protein debris

08.03.2011
New research in the FASEB Journal suggests that a compound called SMER28 reduces beta-amyloid by stimulating autophagy, which effectively slows the buildup of toxic beta-amyloid

If you can't stop the beta-amyloid protein plaques from forming in Alzheimer's disease patients, then maybe you can help the body rid itself of them instead.

At least that's what scientists from New York were hoping for when they found a drug candidate to do just that. Their work appears in a research report online in The FASEB Journal (http://www.fasebj.org), and shows that a new compound, called "SMER28" stimulated autophagy in rat and mice cells.

Autophagy is a process cells use to "clean out" the debris from their interior, including unwanted materials such as the protein aggregates that are hallmarks of Alzheimer's disease. In mice and rat cells, SMER28 effectively slowed down the accumulation of beta-amyloid.

"Our work demonstrates that small molecules can be developed as therapies, by activating a cellular function called autophagy, to prevent Alzheimer's disease," said Paul Greengard, Ph.D.,Nobel laureate and director of the Laboratory of Molecular and Cellular Neuroscience at The Rockefeller University in New York, NY. "By increasing our understanding of autophagy, it might be possible to stimulate it pharmacologically or naturally to improve the quality of life for aging people."

Using mouse and rat cells, scientists tested various compounds for their ability to reduce the buildup of beta-amyloid by exposing cultured cells to compounds known to activate autophagy. The effects of these compounds were then compared by removing growth factors from the culture medium. Researchers then focused on the most effective compound, which was SMER28, to characterize the cellular components involved in this phenomenon. For that purpose, the effect of SMER28 on beta-amyloid formation was compared using normal cells or cells where the expression of genes known to be involved in autophagy was reduced or abolished. Results showed involvement of three important autophagic players, and one was essential for the effect of SMER28. This research represents a radically different approach to treating Alzheimer's disease, namely boosting a cellular mechanism to enhance the clearance of beta-amyloid, as well as other protein aggregates; and it opens a new therapeutic avenue for the treatment of this and other degenerative diseases.

"Autophagy has been called the cell's equivalent of urban renewal. In that sense, SMER28 functions as a cellular forklift to clear out unwanted debris," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "The Rockefeller group shows that strategies to remove the blight in cells that causes Alzheimer's disease are not only worth pursuing, but so far, appear to be very promising."

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Yuan Tian, Victor Bustos, Marc Flajolet, and Paul Greengard. A small-molecule enhancer of autophagy decreases levels of Aâ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J fj.10-175158; doi:10.1096/fj.10-175158 ; http://www.fasebj.org/content/early/2011/03/02/fj.10-175158.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>