Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Rockefeller Faculty Member Studies Mechanisms of DNA Repair

29.05.2009
Agata Smogorzewska, a physician-scientist whose research focuses on DNA repair and on the molecular basis of Fanconi anemia, a genomic instability syndrome that leads to leukemia and other forms of cancer, has been named assistant professor and will join The Rockefeller University as head of the Laboratory of Genome Maintenance in July 2009.

Dr. Smogorzewska, who received her Ph.D. at Rockefeller University in 2002 under the tutelage of Titia de Lange, head of the Laboratory of Cell Biology and Genetics, and her M.D. from Weill Cornell Medical College in 2003, has devoted her career to examining pathways that prevent cancer development, specifically those that repair DNA and induce replicative senescence, a process by which cells terminally arrest growth.

“In the case of Fanconi anemia, patients are very susceptible to a very specific DNA damage that is created by cross-linking agents such as cisplatin,” says Dr. Smogorzewska. “I am interested in understanding how the DNA repair pathway in patients with Fanconi anemia works, the function of the proteins in that pathway and their contribution to cancer prevention.”

Dr. Smogorzewska honed her interest in molecular biology and biochemistry as an undergrad at the University of Southern California, where she also received a summer research scholarship in biological research sponsored by the Howard Hughes Medical Institute and a science and engineering research scholarship sponsored by the United States Department of Energy. After receiving her Ph.D and M.D. she did a clinical pathology residency at Massachusetts General Hospital, and then joined the genetics department at Harvard Medical School, where she has been a postdoc since 2005 in the laboratory of Stephen Elledge.

As a postdoc, Dr. Smogorzewska identified and characterized FANCI, a gene that is mutated in a subset of Fanconi anemia patients. Dr. Smogorzewska’s research further revealed that this gene affects the repair of DNA. Without the proper protein, DNA isn’t repaired and the outcome is full-blown Fanconi anemia, a genetic disorder characterized by bone marrow failure, skeletal anomalies and increased incidence of tumors. Dr. Smogorzewska also completed two whole-genome genetic screens using RNA interference in human cells, one that yielded a list of proteins necessary for survival after DNA cross-link damage and a second that resulted in a list of proteins important for induction of replicative senescence. Both screens identified many novel components of these critical cellular processes.

At Rockefeller, Dr. Smogorzewska will focus her research on understanding how several of these proteins regulate the activity of the Fanconi anemia pathway and other pathways necessary for DNA repair, and on identifying factors that promote survival in Fanconi anemia cells in the setting of DNA damage.

“When a cell is confronted with DNA damage, it can either try to repair the genome or, in the case of irreparable damage, trigger cell death or senescence,” says Dr. Smogorzewska. “My focus is on how the cell tries to repair itself in order to survive and on processes that are induced when the proper repair fails.”

“I am delighted that Agata will be joining the university’s faculty,” says Paul Nurse, the university’s president. “Her research will shed light on the complex processes by which cells detect and repair damaged DNA — processes that have important implications for understanding cancer — and has the potential to help patients with genetic disorders.”

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>