Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Rockefeller Faculty Member Studies Mechanisms of DNA Repair

29.05.2009
Agata Smogorzewska, a physician-scientist whose research focuses on DNA repair and on the molecular basis of Fanconi anemia, a genomic instability syndrome that leads to leukemia and other forms of cancer, has been named assistant professor and will join The Rockefeller University as head of the Laboratory of Genome Maintenance in July 2009.

Dr. Smogorzewska, who received her Ph.D. at Rockefeller University in 2002 under the tutelage of Titia de Lange, head of the Laboratory of Cell Biology and Genetics, and her M.D. from Weill Cornell Medical College in 2003, has devoted her career to examining pathways that prevent cancer development, specifically those that repair DNA and induce replicative senescence, a process by which cells terminally arrest growth.

“In the case of Fanconi anemia, patients are very susceptible to a very specific DNA damage that is created by cross-linking agents such as cisplatin,” says Dr. Smogorzewska. “I am interested in understanding how the DNA repair pathway in patients with Fanconi anemia works, the function of the proteins in that pathway and their contribution to cancer prevention.”

Dr. Smogorzewska honed her interest in molecular biology and biochemistry as an undergrad at the University of Southern California, where she also received a summer research scholarship in biological research sponsored by the Howard Hughes Medical Institute and a science and engineering research scholarship sponsored by the United States Department of Energy. After receiving her Ph.D and M.D. she did a clinical pathology residency at Massachusetts General Hospital, and then joined the genetics department at Harvard Medical School, where she has been a postdoc since 2005 in the laboratory of Stephen Elledge.

As a postdoc, Dr. Smogorzewska identified and characterized FANCI, a gene that is mutated in a subset of Fanconi anemia patients. Dr. Smogorzewska’s research further revealed that this gene affects the repair of DNA. Without the proper protein, DNA isn’t repaired and the outcome is full-blown Fanconi anemia, a genetic disorder characterized by bone marrow failure, skeletal anomalies and increased incidence of tumors. Dr. Smogorzewska also completed two whole-genome genetic screens using RNA interference in human cells, one that yielded a list of proteins necessary for survival after DNA cross-link damage and a second that resulted in a list of proteins important for induction of replicative senescence. Both screens identified many novel components of these critical cellular processes.

At Rockefeller, Dr. Smogorzewska will focus her research on understanding how several of these proteins regulate the activity of the Fanconi anemia pathway and other pathways necessary for DNA repair, and on identifying factors that promote survival in Fanconi anemia cells in the setting of DNA damage.

“When a cell is confronted with DNA damage, it can either try to repair the genome or, in the case of irreparable damage, trigger cell death or senescence,” says Dr. Smogorzewska. “My focus is on how the cell tries to repair itself in order to survive and on processes that are induced when the proper repair fails.”

“I am delighted that Agata will be joining the university’s faculty,” says Paul Nurse, the university’s president. “Her research will shed light on the complex processes by which cells detect and repair damaged DNA — processes that have important implications for understanding cancer — and has the potential to help patients with genetic disorders.”

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>