Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robust network of insect pollinators may collapse suddenly

06.01.2014
The global decline of bees, hoverflies and other pollinators pose a serious threat to food security and biodiversity.

A team of scientists from Wageningen University, Netherlands, and Doñana Biological Station show in the prestigious journal Ecology Letters that a further deterioration of conditions for pollinators may lead to the sudden extinction of numerous species.

Many plant species depend for the production of seed and fruit upon pollinators that carry pollen grains from flower to flower. In return for this hard labor, pollinators receive nectar from plants.

Plants are visited by a large number of pollinator species and pollinators visit many different plant species. All these relations together form a robust network of interactions between plants and pollinators.

These networks have a characteristic structure that is similar in very different natural landscapes, such as rainforests and river deltas, as well as in human-dominated landscapes with orchards, fields and meadows. Plants and pollinators take a position within those networks that makes the benefit from their mutual relationships for each species individually, and for all plants and pollinators together, as large as possible.

Increasingly harsh conditions

Worldwide, pollinators are under pressure from insecticides, loss of habitat, parasites and disease. These drivers of pollinator decline make it increasingly difficult for pollinators to survive.

The scientists of Wageningen University show, with the help of mathematical models, that the implications of a further deterioration of conditions for pollinators, is strongly influenced by the way in which interaction networks are put together. Due to the structure of these networks, pollinator species support each other under difficult circumstances. Pollinator species that live in the same area may therefore maintain themselves under more difficult conditions.

Tipping Point

Pollinator species are, however, also highly depended on each other when circumstances are harsh. The pollinator community, consisting of bees, butterflies, hoverflies and many other species, may therefore collapse entirely when increasingly harsh conditions pass a critical point. Recovery after conditions have past such a tipping point might not be easy. The required improvement in conditions could be substantially larger than what is needed to return to conditions at which the pollinator community collapsed.

Globally, about eighty percent of plant species depends on pollination by insects and other animals. These include a large number of crops that are important for the production of vegetables, fruits, nuts, spices and oilseed. The direct contribution of pollinators the world food production is estimated at 150 billion Euros (200 billion USD).

Publication
J. Jelle Lever, Egbert H. van Nes, Marten Scheffer, and Jordi Bascompte, 2014. The sudden collapse of pollinator communities. Ecology Letters, online 3 January 2014. http://doi.wiley.com/10.1111/ele.12236

Wageningen University is part of Wageningen UR (University & Research centre). The mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes both specialised and applied have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 30 locations (in the Netherlands, Brazil, Chile, Ethiopia and China), 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

J. Jelle Lever | Wageningen University
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Family tree for orchids explains their astonishing variability
04.09.2015 | University of Wisconsin-Madison

nachricht Gone with the wind: A new project focusses on atmospheric input of phosphorus into the Baltic Sea
04.09.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hubble survey unlocks clues to star birth in neighboring galaxy

In a survey of NASA's Hubble Space Telescope images of 2,753 young, blue star clusters in the neighboring Andromeda galaxy (M31), astronomers have found that M31 and our own galaxy have a similar percentage of newborn stars based on mass.

By nailing down what percentage of stars have a particular mass within a cluster, or the Initial Mass Function (IMF), scientists can better interpret the light...

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Ion implanted, co-annealed, screen-printed 21% efficient n-PERT solar cells with a bifaciality >97%

04.09.2015 | Power and Electrical Engineering

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015 | Machine Engineering

Extremely thin ceramic components made possible by extrusion

04.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>