Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robust network of insect pollinators may collapse suddenly

06.01.2014
The global decline of bees, hoverflies and other pollinators pose a serious threat to food security and biodiversity.

A team of scientists from Wageningen University, Netherlands, and Doñana Biological Station show in the prestigious journal Ecology Letters that a further deterioration of conditions for pollinators may lead to the sudden extinction of numerous species.

Many plant species depend for the production of seed and fruit upon pollinators that carry pollen grains from flower to flower. In return for this hard labor, pollinators receive nectar from plants.

Plants are visited by a large number of pollinator species and pollinators visit many different plant species. All these relations together form a robust network of interactions between plants and pollinators.

These networks have a characteristic structure that is similar in very different natural landscapes, such as rainforests and river deltas, as well as in human-dominated landscapes with orchards, fields and meadows. Plants and pollinators take a position within those networks that makes the benefit from their mutual relationships for each species individually, and for all plants and pollinators together, as large as possible.

Increasingly harsh conditions

Worldwide, pollinators are under pressure from insecticides, loss of habitat, parasites and disease. These drivers of pollinator decline make it increasingly difficult for pollinators to survive.

The scientists of Wageningen University show, with the help of mathematical models, that the implications of a further deterioration of conditions for pollinators, is strongly influenced by the way in which interaction networks are put together. Due to the structure of these networks, pollinator species support each other under difficult circumstances. Pollinator species that live in the same area may therefore maintain themselves under more difficult conditions.

Tipping Point

Pollinator species are, however, also highly depended on each other when circumstances are harsh. The pollinator community, consisting of bees, butterflies, hoverflies and many other species, may therefore collapse entirely when increasingly harsh conditions pass a critical point. Recovery after conditions have past such a tipping point might not be easy. The required improvement in conditions could be substantially larger than what is needed to return to conditions at which the pollinator community collapsed.

Globally, about eighty percent of plant species depends on pollination by insects and other animals. These include a large number of crops that are important for the production of vegetables, fruits, nuts, spices and oilseed. The direct contribution of pollinators the world food production is estimated at 150 billion Euros (200 billion USD).

Publication
J. Jelle Lever, Egbert H. van Nes, Marten Scheffer, and Jordi Bascompte, 2014. The sudden collapse of pollinator communities. Ecology Letters, online 3 January 2014. http://doi.wiley.com/10.1111/ele.12236

Wageningen University is part of Wageningen UR (University & Research centre). The mission is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine research institutes both specialised and applied have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 30 locations (in the Netherlands, Brazil, Chile, Ethiopia and China), 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the exact sciences and the technological and social disciplines are at the heart of the Wageningen Approach.

J. Jelle Lever | Wageningen University
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>