Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robotic arm probes chemistry of 3-D objects by mass spectrometry


Proof-of-concept study could soon allow analysis of early earth chemistry on meteorites and other rocks

When life on Earth was first getting started, simple molecules bonded together into the precursors of modern genetic material. A catalyst would have been needed, but enzymes had not yet evolved.

The scientists programmed the robotic arm to poke the sample with an acupuncture needle.

Credit: Rob Felt.

One theory is that the catalytic minerals on a meteorite's surface could have jump-started life's first chemical reactions. But scientists need a way to directly analyze these rough, irregularly shaped surfaces. A new robotic system at Georgia Tech's Center for Chemical Evolution could soon let scientists better simulate and analyze the chemical reactions of early Earth on the surface of real rocks to further test this theory.

In a proof-of-concept study, scientists selected a region for analysis on round or irregularly-shaped objects using a 3-D camera on a robotic arm, which mapped the 3-dimentional coordinates of the sample's surface. The scientists programmed the robotic arm to poke the sample with an acupuncture needle. The needle collected a small amount of material that the robot deposited in a nearby mass spectrometer, which is a powerful tool for determining a substance's chemical composition.

"You see the object on a monitor and then you can point and click and take a sample from a particular spot and the robot will go there," said Facundo Fernandez, a professor in the School of Chemistry and Biochemistry, whose lab led the study. "We're using an acupuncture needle that will touch very carefully on the surface of the object and then the robot will turn around and put the material inside of a high resolution mass spectrometer."

The research was published online February 28 in the journal Analyst, a publication of the Royal Society of Chemistry. The work was supported by a National Science Foundation (NSF) Major Research Instrumentation Program (MRI) grant and by the National Science Foundation (NSF) and NASA Astrobiology Program, under the NSF Center for Chemical Evolution.

Mass spectrometry is a powerful tool for analyzing surface chemistry or for identifying biological samples. It's widely used in research labs across many disciplines, but samples for analysis typically have to be cleaned, carefully prepared, and in the case of rocks, cut into thin, flat samples. The new robotic system is the first report of a 3-D mass spectrometry native surface imaging experiment.

"Other people have used an acupuncture needle to poke a sample and then put that in mass spec, but nobody has tried to do a systematic, three-dimensional surface experiment," Fernandez said. "We are trying to push the limits."

To show that the system was capable of probing a three-dimensional object, the researchers imprinted ink patterns on the surfaces of polystyrene spheres. The team then used the robotic arm to model the surfaces, probe specific regions, and see if samples collected were sufficient for mass spectrometry analysis. The researchers were able to detect inks of different colors and create a 3-D image of the object with sufficient sensitivity for their proof-of-principle setup, Fernandez said.

The research was the result of collaboration between Fernandez's group, which specializes in mass spectrometry, and Henrik Christensen's robotics group in the College of Computing. Christensen is the KUKA Chair of Robotics and a Distinguished Professor of Computing. He is also the executive director of the Institute for Robotics and Intelligent Machines (IRIM) at Georgia Tech.

"The initial findings of this study mark a significant step toward using robots for three-dimensional surface experiments on geological material," Christensen said. "We are using the repeatability and accuracy of robots to achieve new capabilities that have numerous applications in biomedical areas such as dermatology."

"It doesn't happen very often that a group in mass spectrometry will have a very talented robotics group next to them," Fernandez said. "If we tried to learn the robotics on our own it could take us a decade, but for them it's something that's not that difficult."

Christensen's team loaned a Kuka KR5 sixx R650 robot to Fernandez's lab for the study. Afterwards, Fernandez's lab purchased their own robot from Universal Robots. They have also upgraded to a new mass spectrometer capable of resolution nearly eight times higher than the one used in the study. They will soon begin replicating early Earth chemistry on rocks and analyzing the reaction products with their robotic sampling system.

"We really want to look at rocks," Fernandez said. "We want to do reactions on rocks and granites and meteorites and then see what can be produced on the surface."

The technology could also be applied to other research fields, Fernandez said. For example, the robot-mass spec combo might be useful to dermatologists who often probe lesions on the skin, which have distinct molecular signatures depending on if the lesion is a tumor or normal skin tissue.


This research is supported by the American Recovery and Reinvestment Act (ARRA) under the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) (Grant number 0923179), and by the NSF and NASA Astrobiology Program under the NSF Center for Chemical Evolution (CHE-1004579). Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Rachel V. Bennett, et al., "Robotic Plasma Probe Ionization Mass Spectrometry (RoPPI-MS) of Non-Planar Surfaces." (Analyst, February 2014)

Brett Israel | EurekAlert!
Further information:

Further reports about: 3-D Earth Evolution NSF Robotic acupuncture mass reactions surfaces three-dimensional

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>