Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic arm probes chemistry of 3-D objects by mass spectrometry

26.03.2014

Proof-of-concept study could soon allow analysis of early earth chemistry on meteorites and other rocks

When life on Earth was first getting started, simple molecules bonded together into the precursors of modern genetic material. A catalyst would have been needed, but enzymes had not yet evolved.


The scientists programmed the robotic arm to poke the sample with an acupuncture needle.

Credit: Rob Felt.

One theory is that the catalytic minerals on a meteorite's surface could have jump-started life's first chemical reactions. But scientists need a way to directly analyze these rough, irregularly shaped surfaces. A new robotic system at Georgia Tech's Center for Chemical Evolution could soon let scientists better simulate and analyze the chemical reactions of early Earth on the surface of real rocks to further test this theory.

In a proof-of-concept study, scientists selected a region for analysis on round or irregularly-shaped objects using a 3-D camera on a robotic arm, which mapped the 3-dimentional coordinates of the sample's surface. The scientists programmed the robotic arm to poke the sample with an acupuncture needle. The needle collected a small amount of material that the robot deposited in a nearby mass spectrometer, which is a powerful tool for determining a substance's chemical composition.

"You see the object on a monitor and then you can point and click and take a sample from a particular spot and the robot will go there," said Facundo Fernandez, a professor in the School of Chemistry and Biochemistry, whose lab led the study. "We're using an acupuncture needle that will touch very carefully on the surface of the object and then the robot will turn around and put the material inside of a high resolution mass spectrometer."

The research was published online February 28 in the journal Analyst, a publication of the Royal Society of Chemistry. The work was supported by a National Science Foundation (NSF) Major Research Instrumentation Program (MRI) grant and by the National Science Foundation (NSF) and NASA Astrobiology Program, under the NSF Center for Chemical Evolution.

Mass spectrometry is a powerful tool for analyzing surface chemistry or for identifying biological samples. It's widely used in research labs across many disciplines, but samples for analysis typically have to be cleaned, carefully prepared, and in the case of rocks, cut into thin, flat samples. The new robotic system is the first report of a 3-D mass spectrometry native surface imaging experiment.

"Other people have used an acupuncture needle to poke a sample and then put that in mass spec, but nobody has tried to do a systematic, three-dimensional surface experiment," Fernandez said. "We are trying to push the limits."

To show that the system was capable of probing a three-dimensional object, the researchers imprinted ink patterns on the surfaces of polystyrene spheres. The team then used the robotic arm to model the surfaces, probe specific regions, and see if samples collected were sufficient for mass spectrometry analysis. The researchers were able to detect inks of different colors and create a 3-D image of the object with sufficient sensitivity for their proof-of-principle setup, Fernandez said.

The research was the result of collaboration between Fernandez's group, which specializes in mass spectrometry, and Henrik Christensen's robotics group in the College of Computing. Christensen is the KUKA Chair of Robotics and a Distinguished Professor of Computing. He is also the executive director of the Institute for Robotics and Intelligent Machines (IRIM) at Georgia Tech.

"The initial findings of this study mark a significant step toward using robots for three-dimensional surface experiments on geological material," Christensen said. "We are using the repeatability and accuracy of robots to achieve new capabilities that have numerous applications in biomedical areas such as dermatology."

"It doesn't happen very often that a group in mass spectrometry will have a very talented robotics group next to them," Fernandez said. "If we tried to learn the robotics on our own it could take us a decade, but for them it's something that's not that difficult."

Christensen's team loaned a Kuka KR5 sixx R650 robot to Fernandez's lab for the study. Afterwards, Fernandez's lab purchased their own robot from Universal Robots. They have also upgraded to a new mass spectrometer capable of resolution nearly eight times higher than the one used in the study. They will soon begin replicating early Earth chemistry on rocks and analyzing the reaction products with their robotic sampling system.

"We really want to look at rocks," Fernandez said. "We want to do reactions on rocks and granites and meteorites and then see what can be produced on the surface."

The technology could also be applied to other research fields, Fernandez said. For example, the robot-mass spec combo might be useful to dermatologists who often probe lesions on the skin, which have distinct molecular signatures depending on if the lesion is a tumor or normal skin tissue.

###

This research is supported by the American Recovery and Reinvestment Act (ARRA) under the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) (Grant number 0923179), and by the NSF and NASA Astrobiology Program under the NSF Center for Chemical Evolution (CHE-1004579). Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Rachel V. Bennett, et al., "Robotic Plasma Probe Ionization Mass Spectrometry (RoPPI-MS) of Non-Planar Surfaces." (Analyst, February 2014) http://dx.doi.org/10.1039/c4an00277f

Brett Israel | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: 3-D Earth Evolution NSF Robotic acupuncture mass reactions surfaces three-dimensional

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

Hubble observes one-of-a-kind star nicknamed 'Nasty'

22.05.2015 | Physics and Astronomy

Penn researchers show that mental 'map' and 'compass' are two separate systems

22.05.2015 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>