Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roaming receptors

03.08.2009
Neurons communicate more efficiently when neuronal activity causes inhibitory receptors to diffuse away from the synapse

Changes in the synaptic strength of neurons, effected by repeated neuronal activity, drive important behavioral processes such as learning and memory. Continuous simulation of a neuron, for example, can alter the signaling or molecular architecture at its synapses, and make it easier¡ªor harder¡ªfor that neuron to activate other neurons with which it communicates.

Synaptic efficacy can be enhanced by increasing the process known as excitatory neurotransmission, or by decreasing its opposing process, inhibitory neurotransmission. These processes trigger or halt the firing of neurons, respectively. Now, an international team of researchers, including Hiroko Bannai at the RIKEN Brain Science Institute in Wako, has shown that neuronal activity drives inhibitory neurotransmitter receptors to diffuse away from the synapse, which substantially reduces inhibitory neurotransmission at those synapses1.

In many parts of the brain, inhibitory neurotransmission is mediated by a molecule called ¦Ã-aminobutyric acid (GABA) binding to its receptors at synapses. When the researchers induced neuronal activity in cultured neurons, they found fewer GABA receptors¡ªand fewer GABA receptor scaffolding molecules¡ªat the synapses of these neurons. This resulted in less efficient inhibitory neurotransmission owing to smaller inhibitory electrical currents through these receptors.

To respond to GABA molecules, GABA receptors must be on the surface of the neuron. But neuronal activity did not change the levels of GABA receptors that were on the surface or that were inside the neuron. Instead, when the researchers labeled the GABA receptors and watched them move, they found that induction of neuronal activity enhanced the diffusion of the receptors along the surface of the neuron. Importantly, it seemed that greater GABA receptor diffusion caused by neuronal activity reduced the amount of time that the GABA receptors spent at the synapse (Fig. 1, click on link below). This could explain why neuronal activity caused a decrease in inhibitory neurotransmission.

The investigators obtained these results in neurons from the hippocampus, a part of the brain involved in spatial learning. However, other reports have shown that neuronal activity can reduce diffusion and enhance synaptic targeting of receptors for a different inhibitory neurotransmitter called glycine in neurons from the spinal cord. This suggests that different cell types¡ªand different receptors¡ªmay respond to neuronal activity in totally different ways.

These findings indicate that ¡°lateral diffusion, regulated through interactions between receptors and their scaffolding proteins, could provide a simple mechanism for rapid and reversible activity-dependent modulation of synaptic strength,¡± says Bannai. ¡°Next, we plan to elucidate the detailed molecular mechanisms controlling receptor diffusion dynamics.¡±

Reference

1. Bannai, H., L¨¦vi, S., Schweizer, C., Inoue, T., Launey, T., Racine, V., Sibarita, J-B., Mikoshiba, K. & Triller, A. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670¨C682 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Developmental Neurobiology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/755/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>