Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA unpackages the genome and makes it accessible for gene expression

02.10.2012
Our genome is densely packaged in the cell nucleus to protect the fragile DNA molecule and to control its activity. Scientists from the Universities in Regensburg and Munich discovered a novel RNA dependent pathway that unpackages the genome and makes it accessible for gene expression.

The genome encoding for all information to build an entire organism is made of DNA. This molecule is a very thin thread of about 2 m in length. The DNA has to fit into a cell nucleus with a diameter that is 100.000 times smaller than the length of the DNA. In order to stow and to protect the fragile DNA molecule inside, it is wrapped around molecular spools consisting of proteins.


Microscopic picture displaying the distribution of DNA and RNA in human cells: Cellular DNA (blue) and RNA (green) were stained with specific dyes and visualized by fluorescence microscopy. In control cells containing RNA, the DNA is distributed homogenously within the cell nucleus. After specific RNA depletion (lower panel) the DNA aggregates into compact and inactive higher order structures of chromatin.

Image: University of Regensburg

About 30 millions of such spools, arranged like pearls on a string, are required to package the DNA molecule. The pearls on a string undergo further coiling and compacting to safely store DNA that is called chromatin in its packaged form. However, for cell function and daily use the DNA information of specific genomic regions have to be rendered accessible. Therefore active mechanisms must have evolved to unpackage the genome and allow the readout of the underlying genetic information.

Researchers belonging to the groups of the biochemist Gernot Längst from the University of Regensburg and Axel Imhof, a molecular biologist at the LMU in Munich, could now show that small RNA molecules regulate the accessibility and structure of the DNA in chromatin. They identified and characterized snoRNAs (a specific class of RNA molecules) as key regulators of chromatin organisation. In combination with an RNA and chromatin binding protein (the adapterprotein Df31) the RNA binds to specific regions of the genome. This complex interferes with the regular packaging of chromatin and locally decondenses this structure, thereby allowing the readout of the genetic information.

The results were published in „Molecular Cell“ ((DOI:10.1016/j.molcel.2012.08.021).
http://www.cell.com/molecular-cell/abstract/S1097-2765%2812%2900739-3?switch=standard

Press Contact:
Prof. Dr. Gernot Längst
University of Regensburg
Biochemistry III
phone +49 941 943-2849
gernot.laengst@vkl.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.uni-regensburg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>