Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Against Toxic Sugars

22.04.2013
University of Würzburg researchers describe a new form of gene activation in the scientific journal "Cell". They also show how salmonella bacteria thus prevent themselves from being poisoned by too much sugar. The new findings also hold promise for application in bioengineering.
Sugar is vital to all organisms. Bacteria, plants, animals and humans use glucose and other sugars as an energy source and as building blocks for biosynthesis. Therefore, it is very important to keep the intracellular sugar concentration at the right level.

After taking in glucose into their cells, the bacteria first attach a phosphate group to the sugar molecule. This prevents the glucose from freely leaving the cell. At the same time, the glucose is made available as an energy source in this way.

Stress response to an excessive amount of sugar

As essential as glucose may be to the bacteria: It can also become dangerous to them. An excessive amount of sugar in the cell inhibits the growth of the bacteria and can even cause damage to their genome.

"For this reason, the bacteria react to excessive sugar levels with a stress response," says Professor Jörg Vogel at the Institute for Molecular Infection Biology of the University of Würzburg: In this process, a small RNA molecule leads to a reduction in the quantity of transporter molecules responsible for importing sugar into the cell.

Long sought-after system found

However, this stress response progresses at a rather slow pace. "There must be an additional way of reducing stress, enabling the bacteria to get rid of the problematic sugar more quickly" says Vogel. Researchers have been trying to find this system for about 40 years.

Together with Carin Vanderpool from Illinois (USA), Vogel's team has now identified this system in salmonella bacteria. As reported in the journal "Cell", the researchers discovered a previously unknown mechanism of gene activation.

Small RNA triggers a quick response

The centerpiece of sugar reduction in salmonella bacteria is a small RNA molecule, which also triggers the slow stress response to sugar: It activates an enzyme responsible for removing the phosphate group from glucose and other sugars, allowing the sugar molecules to flow practically all by themselves out of the cell.

"The small RNA triggers the quick stress response with a completely novel mechanism of gene regulation," the Würzburg Professor explains. "It actively stabilizes the messenger RNA for the phosphatase enzyme, leading to high intracellular levels of this enzyme."

This shows again that RNA molecules are able to regulate each other without protein intervention. Equally fascinating is the fact that the same regulatory RNA can both activate and suppress genes with similar function, which enables a very precise response to stress.

Promising for bioengineering or antibiotics research

According to Vogel, the new findings might be interesting for industrial application, namely for the biotechnological production of sugars with bacterial cultures. The important small RNA might be used, for instance, to modify bacteria in a way that they retain as much sugar in their cell as possible – even if it means their own death. The application of this method would improve the sugar yield in bioreactors.

Furthermore, bacteria – including pathogens, such as salmonella – generally take in more sugar than they can actually process. If the activation of the corresponding stress response is inhibited in a targeted way, this should enhance the efficacy of antibiotics," Vogel explains.

Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis. Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jörg Vogel. Cell, Volume 153, Issue 2, 426-437, 11 April 2013, doi: 10.1016/j.cell.2013.03.003

Contact person

Prof. Dr. Jörg Vogel, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-80898 joerg.vogel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>