Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Against Toxic Sugars

22.04.2013
University of Würzburg researchers describe a new form of gene activation in the scientific journal "Cell". They also show how salmonella bacteria thus prevent themselves from being poisoned by too much sugar. The new findings also hold promise for application in bioengineering.
Sugar is vital to all organisms. Bacteria, plants, animals and humans use glucose and other sugars as an energy source and as building blocks for biosynthesis. Therefore, it is very important to keep the intracellular sugar concentration at the right level.

After taking in glucose into their cells, the bacteria first attach a phosphate group to the sugar molecule. This prevents the glucose from freely leaving the cell. At the same time, the glucose is made available as an energy source in this way.

Stress response to an excessive amount of sugar

As essential as glucose may be to the bacteria: It can also become dangerous to them. An excessive amount of sugar in the cell inhibits the growth of the bacteria and can even cause damage to their genome.

"For this reason, the bacteria react to excessive sugar levels with a stress response," says Professor Jörg Vogel at the Institute for Molecular Infection Biology of the University of Würzburg: In this process, a small RNA molecule leads to a reduction in the quantity of transporter molecules responsible for importing sugar into the cell.

Long sought-after system found

However, this stress response progresses at a rather slow pace. "There must be an additional way of reducing stress, enabling the bacteria to get rid of the problematic sugar more quickly" says Vogel. Researchers have been trying to find this system for about 40 years.

Together with Carin Vanderpool from Illinois (USA), Vogel's team has now identified this system in salmonella bacteria. As reported in the journal "Cell", the researchers discovered a previously unknown mechanism of gene activation.

Small RNA triggers a quick response

The centerpiece of sugar reduction in salmonella bacteria is a small RNA molecule, which also triggers the slow stress response to sugar: It activates an enzyme responsible for removing the phosphate group from glucose and other sugars, allowing the sugar molecules to flow practically all by themselves out of the cell.

"The small RNA triggers the quick stress response with a completely novel mechanism of gene regulation," the Würzburg Professor explains. "It actively stabilizes the messenger RNA for the phosphatase enzyme, leading to high intracellular levels of this enzyme."

This shows again that RNA molecules are able to regulate each other without protein intervention. Equally fascinating is the fact that the same regulatory RNA can both activate and suppress genes with similar function, which enables a very precise response to stress.

Promising for bioengineering or antibiotics research

According to Vogel, the new findings might be interesting for industrial application, namely for the biotechnological production of sugars with bacterial cultures. The important small RNA might be used, for instance, to modify bacteria in a way that they retain as much sugar in their cell as possible – even if it means their own death. The application of this method would improve the sugar yield in bioreactors.

Furthermore, bacteria – including pathogens, such as salmonella – generally take in more sugar than they can actually process. If the activation of the corresponding stress response is inhibited in a targeted way, this should enhance the efficacy of antibiotics," Vogel explains.

Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis. Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jörg Vogel. Cell, Volume 153, Issue 2, 426-437, 11 April 2013, doi: 10.1016/j.cell.2013.03.003

Contact person

Prof. Dr. Jörg Vogel, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-80898 joerg.vogel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>