Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Against Toxic Sugars

22.04.2013
University of Würzburg researchers describe a new form of gene activation in the scientific journal "Cell". They also show how salmonella bacteria thus prevent themselves from being poisoned by too much sugar. The new findings also hold promise for application in bioengineering.
Sugar is vital to all organisms. Bacteria, plants, animals and humans use glucose and other sugars as an energy source and as building blocks for biosynthesis. Therefore, it is very important to keep the intracellular sugar concentration at the right level.

After taking in glucose into their cells, the bacteria first attach a phosphate group to the sugar molecule. This prevents the glucose from freely leaving the cell. At the same time, the glucose is made available as an energy source in this way.

Stress response to an excessive amount of sugar

As essential as glucose may be to the bacteria: It can also become dangerous to them. An excessive amount of sugar in the cell inhibits the growth of the bacteria and can even cause damage to their genome.

"For this reason, the bacteria react to excessive sugar levels with a stress response," says Professor Jörg Vogel at the Institute for Molecular Infection Biology of the University of Würzburg: In this process, a small RNA molecule leads to a reduction in the quantity of transporter molecules responsible for importing sugar into the cell.

Long sought-after system found

However, this stress response progresses at a rather slow pace. "There must be an additional way of reducing stress, enabling the bacteria to get rid of the problematic sugar more quickly" says Vogel. Researchers have been trying to find this system for about 40 years.

Together with Carin Vanderpool from Illinois (USA), Vogel's team has now identified this system in salmonella bacteria. As reported in the journal "Cell", the researchers discovered a previously unknown mechanism of gene activation.

Small RNA triggers a quick response

The centerpiece of sugar reduction in salmonella bacteria is a small RNA molecule, which also triggers the slow stress response to sugar: It activates an enzyme responsible for removing the phosphate group from glucose and other sugars, allowing the sugar molecules to flow practically all by themselves out of the cell.

"The small RNA triggers the quick stress response with a completely novel mechanism of gene regulation," the Würzburg Professor explains. "It actively stabilizes the messenger RNA for the phosphatase enzyme, leading to high intracellular levels of this enzyme."

This shows again that RNA molecules are able to regulate each other without protein intervention. Equally fascinating is the fact that the same regulatory RNA can both activate and suppress genes with similar function, which enables a very precise response to stress.

Promising for bioengineering or antibiotics research

According to Vogel, the new findings might be interesting for industrial application, namely for the biotechnological production of sugars with bacterial cultures. The important small RNA might be used, for instance, to modify bacteria in a way that they retain as much sugar in their cell as possible – even if it means their own death. The application of this method would improve the sugar yield in bioreactors.

Furthermore, bacteria – including pathogens, such as salmonella – generally take in more sugar than they can actually process. If the activation of the corresponding stress response is inhibited in a targeted way, this should enhance the efficacy of antibiotics," Vogel explains.

Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis. Kai Papenfort, Yan Sun, Masatoshi Miyakoshi, Carin K. Vanderpool, and Jörg Vogel. Cell, Volume 153, Issue 2, 426-437, 11 April 2013, doi: 10.1016/j.cell.2013.03.003

Contact person

Prof. Dr. Jörg Vogel, Institute for Molecular Infection Biology, University of Würzburg, T +49 (0)931 31-80898 joerg.vogel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>