Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Snippets Control Protein Production by Disabling mRNAs

18.08.2010
FINDINGS: Short pieces of RNA, called microRNAs, control protein production primarily by causing the proteins’ RNA templates (known as messenger RNA or mRNA) to be disabled by the cell, according to Whitehead Institute scientists.

RELEVANCE: Researchers have known that mammalian microRNAs control protein production by causing the mRNAs to degrade, but they have wondered how much additional effects microRNAs impart by jamming the process that translates mRNAs into proteins. These results from a genome-wide study indicate that scientists can accurately study microRNA function and corresponding gene targets through examination of mRNA levels, which is easier than examining protein levels.

Short pieces of RNA, called microRNAs, control protein production by causing the proteins’ RNA templates (known as messenger RNA or mRNA) to be disabled by the cell, according to Whitehead Institute scientists.

Researchers have known that mammalian microRNAs control protein production by causing the mRNAs to degrade but they have wondered how much additional effects microRNAs impart by jamming the process that translates mRNAs into proteins.

For Whitehead Institute Member David Bartel, his lab’s genome-wide research helps answer this question and will serve as a foundation for future research.

“These results reveal the ultimate outcome of microRNA regulation of many genes and provide a framework for us to think about how microRNAs are acting,” says Bartel. “Also, we’re more confident that you can learn which genes are regulated by a microRNA simply by looking at the mRNA levels, which is much easier to do than looking at protein levels.”

This is the first time regulation of so many natural targets of microRNAs has been studied in such exacting detail. The Bartel lab’s results are published in Nature.

A cell uses each microRNA to dampen the protein production of hundreds of target mRNAs, thereby fine-tuning the cell’s protein output. To create a protein, a cell uses an RNA template that is copied from a gene. A cellular machine called a ribosome then translates this mRNA template into a chain of amino acids to form the protein. Until now, researchers were unsure where in this process microRNAs act—through elimination of mRNA targets or through interference with mRNA-to-amino acid translation without much change in the mRNA.

To date, some researchers have relied mostly on highly sensitive mRNA assays to study the effects of microRNAs. Because these assays measure only mRNA levels and not protein levels, researchers worried that any microRNA activity that reduced translation without reducing the mRNA would be missed, potentially skewing results.

To determine microRNAs’ effects on translation and mRNA levels, Huili Guo, a graduate student in the Bartel lab, performed genome-wide ribosome profiling of human and mouse cells. This test provides a snapshot of whether or not ribosomes are sitting on the mRNA templates. The presence of ribosomes on the mRNA indicates that the mRNA is being translated.

Guo then measured the levels of mRNAs in the cell. By accounting for the change in the amount of targeted mRNAs, she could derive the microRNAs’ effects at the translation level.

If microRNAs only disrupt translation, then targeted mRNA levels should be similar to those seen in controls. Also, the ribosome profile should show far fewer ribosomes on the targeted mRNAs as a result of interrupted translation. However, Guo found that the levels of the targeted mRNAs all decreased. Although the ribosome profiling indicated that translation was also slightly reduced on these mRNAs, the overall reduction in protein production was primarily due to the more greatly reduced mRNA levels.

To extend her results, Guo says other cells should be tested.

“I looked at cells that were growing under normal conditions,” says Guo. “But microRNAs have been linked to stress responses in some cells, so cells may act differently under those and other conditions.”

This research was supported by the National Institute of Health (NIH), the Agency for Science, Technology and Research, Singapore, the Ruth L. Kirschstein National Research Service Award, and the Howard Hughes Medical Institute (HHMI).

David Bartel is a Member at Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citations:

“Mammalian microRNAs predominantly act to decrease target mRNA levels”

Nature, August 12, 2010

Huili Guo (1,2), Nicholas T. Ingolia (3,4), Jonathan S. Weissman (3,4), and David P. Bartel (1,2).

1. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.

2. Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

3. Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA.

4. California Institute for Quantitative Biosciences, San Francisco, California 94158, USA.

Nicole Giese | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>