Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How RNA polymerase II gets the go-ahead for gene transcription

All cells perform certain basic functions. Each must selectively transcribe parts of the DNA that makes up its genome into RNAs that specify the structure of proteins.

The set of proteins synthesized by a cell in turn determines its structure and behaviour, and enables it to survive and reproduce. So it is crucial that the appropriate stretches of DNA are transcribed in each cell type. In today's issue of the journal Nature, a team of researchers at the Gene Center of Ludwig-Maximilians-Universität (LMU) in Munich, led by Professor Patrick Cramer, provides the first detailed description of how the RNA polymerase II initiates gene transcription.

"The findings led us to propose a model of the whole complicated process of transcription initiation," says Cramer. "This operation is of crucial importance in all organisms, because it determines which genes are expressed, and when. Our work thus represents a milestone in the quest to understand gene regulation."

Cell types such as liver cells and nerve cells differ from one another because they make distinct sets of proteins. Therefore, gene transcription and protein synthesis must be carried out with great precision. This requires the use of complicated assemblies made up of many different proteins, often referred to as molecular machines. The basic structure of RNA polymerase II, the protein complex that transcribes genes encoding proteins in multicellular organisms, was worked out some years ago, but this structure could not explain how the initial steps in transcription take place.

Signals encoded in the DNA sequence tell RNA polymerase II where to start and stop transcription. The regions in which transcription begins are called promoters. In many genes, the promoter region is marked by a short DNA sequence called the TATA box. The actual transcription start site (TSS) is located 30-40 nucleotides downstream. It was already known that the protein TBP recognizes and binds to the TATA box, producing a sharp kink in the DNA. TBP in turn binds TFIIB, to which the polymerase enzyme (comprising 12 different proteins) then attaches. So it is TFIIB that actually gives the start signal for transcription initiation.

What the LMU researchers in Cramer's group have now done is to determine the three-dimensional structure of the complex formed between RNA polymerase II and TFIIB from brewer's yeast. Analysis of this complex using X-ray diffraction gave them a map that could be compared with one obtained for the polymerase alone. The differences between the two enabled the scientists to localize the TFIIB with respect to both the polymerase and the DNA. On the basis of this structure they were able to deduce how the initiation of transcription occurs, how the TSS is selected and the first segment of RNA is synthesized and, finally, how the polymerase "shifts gear" from the initiation to the elongation mode, as it leaves the region of the promoter and proceeds on through the gene. In a fruitful collaboration with Professor Michael Thomm's lab at the University of Regensburg the researchers also confirmed important aspects of their model experimentally.

It turns out that TFIIB acts as a bridge between TBP and polymerase, so that the polymerase faces the DNA, in the so-called closed complex. This is converted into an open complex when part of the TFIIB (called the B-linker) inserts between the two DNA strands. One of the strands (the template strand) is displaced into a tunnel formed by TFIIB and the polymerase. The complex then searches the sequence in the tunnel for an initiator sequence that defines the TSS, "using a second element (the B-reader) in TFIIB, which functions rather like the reading head in a tape recorder", explains Cramer. When the TSS is located, the first two nucleotides of the new RNA transcript pair with their complementary partners on the DNA and are linked together by the polymerase. This marks the real initiation of transcription. After the addition of additional nucleotides, TFIIB is released from the complex.

The resulting elongation complex continues to synthesize an RNA sequence complementary to that of the template DNA strand, which later determines the structure of a specific protein. As Cramer points out, "The findings led us to propose a model of the whole complicated process of transcription initiation, an operation that is of crucial importance in all organisms, because it determines which genes are expressed, and when." The work of the LMU group thus represents a milestone in the quest to understand how genes are regulated. The results also provide the framework for investigating the mechanisms underlying the regulation of transcription initiation, which governs cellular gene expression. (PH)

Luise Dirscherl | EurekAlert!
Further information:

Further reports about: DNA DNA sequence DNA strand LMU RNA RNA polymerase TBP TFIIB TSS Tata gene transcription multicellular organism nerve cell

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>