Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA offers a safer way to reprogram cells

26.07.2010
New technique could revert cells to immature state that can develop into any cell type

In recent years, scientists have shown that they can reprogram human skin cells to an immature state that allows the cells to become any type of cell. This ability, known as pluripotency, holds the promise of treating diseases such as diabetes and Parkinson's disease by transforming the patients' own cells into replacements for the nonfunctioning tissue.

However, the techniques now used to transform cells pose some serious safety hazards. To deliver the genes necessary to reprogram cells to a pluripotent state, scientists use viruses carrying DNA, which then becomes integrated into the cell's own DNA. But this so-called DNA-based reprogramming carries the risk of disrupting the cell's genome and leading it to become cancerous.

Now, for the first time, MIT researchers have shown that they can deliver those same reprogramming genes using RNA, the genetic material that normally ferries instructions from DNA to the cell's protein-making machinery. This method could prove much safer than DNA-based reprogramming, say the researchers, Associate Professor of Electrical and Biological Engineering Mehmet Fatih Yanik and electrical engineering graduate student Matthew Angel.

Yanik and Angel describe the method, also the subject of Angel's master's thesis, in the July 23 issue of the journal PLoS ONE.

However, the researchers say they cannot yet claim to have reprogrammed the cells into a pluripotent state. To prove that, they would need to grow the cells in the lab for a longer period of time and study their ability to develop into other cell types — a process now underway in their lab. Their key achievement is demonstrating that the genes necessary for reprogramming can be delivered with RNA.

"Before this, nobody had a way to transfect cells multiple times with protein-encoding RNA," says Yanik. (Transfection is the process of introducing DNA or RNA into a cell without using viruses to deliver them.)

In 2006, researchers at Kyoto University showed they could reprogram mouse skin cells into a pluripotent, embryonic-like state with just four genes. More recently, other scientists have achieved the same result in human cells by delivering the proteins encoded by those genes directly into mature cells, but that process is more expensive, inefficient and time-consuming than reprogramming with DNA.

Yanik and Angel decided to pursue a new alternative by transfecting cells with messenger RNA (mRNA), a short-lived molecule that carries genetic instructions copied from DNA.

However, they found that RNA transfection poses a significant challenge: When added to mature human skin cells, mRNA provokes an immune response meant to defend against viruses made of RNA. Repeated exposure to long strands of RNA leads cells to undergo cell suicide, sacrificing themselves to help prevent the rest of the body from being infected.

Yanik and Angel knew that some RNA viruses, including hepatitis C, can successfully suppress that defensive response. After reviewing studies of hepatitis C's evasive mechanisms, they did experiments showing they could shut off the response by delivering short interfering RNA (siRNA) that blocks production of several proteins key to the response.

Once the defense mechanism is shut off, mRNA carrying the genes for cell reprogramming can be safely delivered. The researchers showed that they could induce cells to produce the reprogramming proteins for more than a week, by delivering siRNA and mRNA every other day.

Source: "Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins" by Matthew Angel and Mehmet Fatih Yanik. PLoS ONE 23 July, 2010

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: DNA DNA-based Mehmet PLoS One RNA Transfection cell type human cell human skin human skin cells skin cell

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>