Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Interference Found in Budding Yeasts

14.09.2009
FINDINGS: Some budding yeast species have the ability to silence genes using RNA interference (RNAi). Until now, most researchers thought that no budding yeasts possess the RNAi pathway because Saccharomyces cerevisiae, the protoypical model budding yeast does not.

RELEVANCE: Some budding yeasts cause human diseases, while other budding yeasts are used in research as models for more complicated organisms, in industry to create beer and biofuels, and in pharmaceuticals to produce drugs and vaccines. The ability to study RNAi in yeast and to use RNAi to alter yeast protein production could yield benefits for each of these fields.

RNAi, a key biochemical pathway in the genetic control networks of most organisms, has now been discovered in Saccharomyces castellii, a close relative of the prototypical budding yeast S. cerevisiae, and in Candida albicans, a common human pathogen.

Budding yeasts are used in research as models for more complicated organisms, in industry to create beer and biofuels, and in pharmaceuticals to produce drugs and vaccines. The ability to study RNAi in yeast and to use RNAi to alter the yeast’s protein production may be beneficial for all these fields.

The finding is reported in the September 10 issue of Science Express.

“For a long time, people thought that budding yeast didn’t have RNAi at all because Saccharomyces cerevisiae, which is the model budding yeast, doesn’t have RNAi,” says Kathleen Xie, an author on the paper and an undergraduate researcher in the lab of Whitehead Member David Bartel. “And this was kind of a pity because we didn’t have a budding yeast model organism available for RNAi research.”

Yeast is a good model for the cells of more complicated organisms, including humans, because yeast genomes are easy to manipulate, yeast cells have a high rate of reproduction, and yeast cells have many functions and biochemical pathways in common with human cells.

One biochemical pathway found in more complex organisms is the RNAi pathway, which is used by plants and many animals to silence genes of viruses and transposons, which are parasitic DNA elements. Two key proteins involved in RNAi—known as Dicer and Argonaute—are lacking in the S. cerevisiae genome. However, the lab of Kenneth Wolfe at Trinity College, Dublin, found that other budding yeasts do have Argonaute, indicating that they might have some form of RNAi. Wolfe brought up the finding to Bartel, who has devoted most of his lab’s effort to studying RNAi and related biochemical pathways.

Three Bartel researchers teamed up to determine whether any budding yeasts have RNAi capabilities, in collaboration with the laboratories of Wolfe and Whitehead Founding Member Gerald Fink. One of the species with the Argonaute protein is S. castellii. Anna Drinnenberg, a graduate student in the Bartel lab, developed S. castellii strains to study. Once the strains were established, Drinnenberg examined all of the small bits of RNA in S. castellii cells, looking for telltale signs that Dicer had been at work there.

Dicer, as its name implies, chops up long strands of double-stranded RNA into fairly uniform bits about 20 nucleotides long and hands them off to Argonaute. In S. castellii and in other budding yeasts, Drinnenberg found the correct size of chopped dsRNA in the yeast cells, yet was initially unable to detect a gene coding for a Dicer protein.

It turns out that the Dicer protein in these yeasts looks very different from the Dicer proteins of animals, plants and other fungi. “The fact that the Dicers of budding yeasts are so unusual probably explains why RNAi had gone undetected for so long in these species,” says Bartel, who is also a professor at MIT and a Howard Hughes Medical Institute (HHMI) investigator.

After the researchers confirmed that they had found the Dicer gene, David Weinberg, a graduate student in the Bartel lab, inserted the S. castellii Argonaute and Dicer genes into S. cerevisiae, which restored the RNAi pathway to this species that lost it.

Xie then observed that the restored RNAi pathway in S. cerevisiae prevented transposons from copying and reinserting themselves into the yeast’s genome. Transposons can harm the genome, and one of the main purposes of the RNAi pathway in other species including animals is to silence them.

“With a validated Dicer protein in S. castellii and reconstituted pathway in S. cerevisiae, we can now examine an RNAi pathway using all of the tools available for studying budding yeasts,” says Weinberg.

Bartel, agrees. “We can learn more about the RNAi pathway, just as yeast has taught us about many other biological processes. And there is a hope and assumption that researchers will now be able to use RNAi as a tool to learn more about these yeasts, including C. albicans.”

For Fink, this research also beautifully models one of Whitehead’s strengths--cooperation among researchers.

“This work was typical of collaboration at Whitehead,” says Fink, “You do the experiments first and worry about acclaim afterward, so the outcome is more synergistic than if the labs worked independently.”

Drinnenberg says that the teamwork was more than at the primary investigators’ level. “Particularly in the initial steps in working with yeast, I would go downstairs to the Fink lab and the lab of Whitehead Fellow Andreas Hochwagen to ask for advice, and talking to the people in their labs was very, very helpful.”

This research was funded by the National Institutes of Health (NIH), the National Science Foundation (NSF), and Boehringer-Ingelheim Fonds.

David Bartel is a Member at Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology.

Gerald Fink’s primary affiliation is with Whitehead Institute of Biomedical Research, where his laboratory is located and all his research is conducted. He also is a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“RNAi in budding yeast”

Science Express, September 10, 2009.

Ines A. Drinnenberg (1,2*), David E. Weinberg (1,2,3*), Kathleen T. Xie (1,2,3*), Jeffrey P. Mower (4), Kenneth H. Wolfe (4), Gerald R. Fink (1,3), David P. Bartel (1,2,3).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
2. Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
4. Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
* These authors contributed equally to this work.

Nicole Giese | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>