Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA Interference Found in Budding Yeasts

14.09.2009
FINDINGS: Some budding yeast species have the ability to silence genes using RNA interference (RNAi). Until now, most researchers thought that no budding yeasts possess the RNAi pathway because Saccharomyces cerevisiae, the protoypical model budding yeast does not.

RELEVANCE: Some budding yeasts cause human diseases, while other budding yeasts are used in research as models for more complicated organisms, in industry to create beer and biofuels, and in pharmaceuticals to produce drugs and vaccines. The ability to study RNAi in yeast and to use RNAi to alter yeast protein production could yield benefits for each of these fields.

RNAi, a key biochemical pathway in the genetic control networks of most organisms, has now been discovered in Saccharomyces castellii, a close relative of the prototypical budding yeast S. cerevisiae, and in Candida albicans, a common human pathogen.

Budding yeasts are used in research as models for more complicated organisms, in industry to create beer and biofuels, and in pharmaceuticals to produce drugs and vaccines. The ability to study RNAi in yeast and to use RNAi to alter the yeast’s protein production may be beneficial for all these fields.

The finding is reported in the September 10 issue of Science Express.

“For a long time, people thought that budding yeast didn’t have RNAi at all because Saccharomyces cerevisiae, which is the model budding yeast, doesn’t have RNAi,” says Kathleen Xie, an author on the paper and an undergraduate researcher in the lab of Whitehead Member David Bartel. “And this was kind of a pity because we didn’t have a budding yeast model organism available for RNAi research.”

Yeast is a good model for the cells of more complicated organisms, including humans, because yeast genomes are easy to manipulate, yeast cells have a high rate of reproduction, and yeast cells have many functions and biochemical pathways in common with human cells.

One biochemical pathway found in more complex organisms is the RNAi pathway, which is used by plants and many animals to silence genes of viruses and transposons, which are parasitic DNA elements. Two key proteins involved in RNAi—known as Dicer and Argonaute—are lacking in the S. cerevisiae genome. However, the lab of Kenneth Wolfe at Trinity College, Dublin, found that other budding yeasts do have Argonaute, indicating that they might have some form of RNAi. Wolfe brought up the finding to Bartel, who has devoted most of his lab’s effort to studying RNAi and related biochemical pathways.

Three Bartel researchers teamed up to determine whether any budding yeasts have RNAi capabilities, in collaboration with the laboratories of Wolfe and Whitehead Founding Member Gerald Fink. One of the species with the Argonaute protein is S. castellii. Anna Drinnenberg, a graduate student in the Bartel lab, developed S. castellii strains to study. Once the strains were established, Drinnenberg examined all of the small bits of RNA in S. castellii cells, looking for telltale signs that Dicer had been at work there.

Dicer, as its name implies, chops up long strands of double-stranded RNA into fairly uniform bits about 20 nucleotides long and hands them off to Argonaute. In S. castellii and in other budding yeasts, Drinnenberg found the correct size of chopped dsRNA in the yeast cells, yet was initially unable to detect a gene coding for a Dicer protein.

It turns out that the Dicer protein in these yeasts looks very different from the Dicer proteins of animals, plants and other fungi. “The fact that the Dicers of budding yeasts are so unusual probably explains why RNAi had gone undetected for so long in these species,” says Bartel, who is also a professor at MIT and a Howard Hughes Medical Institute (HHMI) investigator.

After the researchers confirmed that they had found the Dicer gene, David Weinberg, a graduate student in the Bartel lab, inserted the S. castellii Argonaute and Dicer genes into S. cerevisiae, which restored the RNAi pathway to this species that lost it.

Xie then observed that the restored RNAi pathway in S. cerevisiae prevented transposons from copying and reinserting themselves into the yeast’s genome. Transposons can harm the genome, and one of the main purposes of the RNAi pathway in other species including animals is to silence them.

“With a validated Dicer protein in S. castellii and reconstituted pathway in S. cerevisiae, we can now examine an RNAi pathway using all of the tools available for studying budding yeasts,” says Weinberg.

Bartel, agrees. “We can learn more about the RNAi pathway, just as yeast has taught us about many other biological processes. And there is a hope and assumption that researchers will now be able to use RNAi as a tool to learn more about these yeasts, including C. albicans.”

For Fink, this research also beautifully models one of Whitehead’s strengths--cooperation among researchers.

“This work was typical of collaboration at Whitehead,” says Fink, “You do the experiments first and worry about acclaim afterward, so the outcome is more synergistic than if the labs worked independently.”

Drinnenberg says that the teamwork was more than at the primary investigators’ level. “Particularly in the initial steps in working with yeast, I would go downstairs to the Fink lab and the lab of Whitehead Fellow Andreas Hochwagen to ask for advice, and talking to the people in their labs was very, very helpful.”

This research was funded by the National Institutes of Health (NIH), the National Science Foundation (NSF), and Boehringer-Ingelheim Fonds.

David Bartel is a Member at Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and a professor of biology at Massachusetts Institute of Technology.

Gerald Fink’s primary affiliation is with Whitehead Institute of Biomedical Research, where his laboratory is located and all his research is conducted. He also is a professor of biology at Massachusetts Institute of Technology.

Full Citation:

“RNAi in budding yeast”

Science Express, September 10, 2009.

Ines A. Drinnenberg (1,2*), David E. Weinberg (1,2,3*), Kathleen T. Xie (1,2,3*), Jeffrey P. Mower (4), Kenneth H. Wolfe (4), Gerald R. Fink (1,3), David P. Bartel (1,2,3).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.
2. Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
4. Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
* These authors contributed equally to this work.

Nicole Giese | Newswise Science News
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>