Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-based drugs give more control over gene editing

17.11.2015

CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes

In just the past few years, researchers have found a way to use a naturally occurring bacterial system known as CRISPR/Cas9 to inactivate or correct specific genes in any organism. CRISPR/Cas9 gene editing activity runs continuously, though, leading to risk of additional editing at unwanted sites. Now, researchers at University of California, San Diego School of Medicine, Ludwig Cancer Research and Isis Pharmaceuticals demonstrate a commercially feasible way to use RNA to turn the CRISPR-Cas9 system on and off as desired -- permanently editing a gene, but only temporarily activating CRISPR-Cas9. The study is published November 16 by Proceedings of the National Academy of Sciences.


The conventional CRISPR-Cas9 system comprises two parts: the Cas9 enzyme, which acts like a wrench, and specific RNA guides (CRISPRs), which act as different socket heads. These RNAs guide the Cas9 protein to the target gene on a DNA strand. This technique allows researchers to study genes in a specific, targeted way.

Credit: Ernesto del Aguila III, NHGRI

"These findings provide a platform for multiple therapeutic applications, especially for nervous system diseases, using successive application of designer CRISPR RNA drugs," said senior author Don Cleveland, PhD, Distinguished Professor and Chair of the Department of Cellular and Molecular Medicine at UC San Diego School of Medicine and head of Ludwig Cancer Research's Laboratory for Cell Biology.

CRISPR/Cas9 works like this: researchers design a "guide" RNA to match the sequence of a specific target gene. The RNA guides the Cas9 enzyme to the desired spot, where it cuts the DNA. The cell can repair the DNA break, but it does so imprecisely, thereby inactivating the gene. Alternatively, researchers can coax the cell into replacing the section adjacent to the cut with a healthier version of the gene. Researchers are now testing the CRISPR/Cas9 system in a variety of applications to repair defective genes that cause disease.

The new approach introduces chemically modified, RNA-based drugs to transiently activate the CRISPR/Cas9 gene editing system. An initial, specially modified RNA is used to replace the usual guide RNA. This RNA directs Cas9's DNA-cutting activity to a selected target gene and the editing process proceeds. Activity is transient, however, as the editing stops when the guiding RNA drug is cleared. An extension of the approach can switch off the molecular scissors even faster by addition of a second, chemically modified RNA drug that directs inactivation of the gene encoding the Cas9 enzyme.

"The RNA-based drugs we developed in this study provide many advantages over the current CRISPR/Cas9 system, such as increased editing efficiency and potential selectivity," said Cleveland. "In addition, they can be synthesized efficiently, on an industrial scale and in a commercially feasible manner today."

"Today's published work is another demonstration of the successful synergy between Dr. Cleveland's lab and my team at Isis Pharmaceuticals," said C. Frank Bennet, PhD, co-senior author of the study and senior vice president of research at Isis Pharmaceuticals. "Leveraging Isis' expertise in developing RNA-targeted compounds, together the team has demonstrated that we can develop molecules that enhance the effectiveness of the CRISPR mechanism."

###

Study co-authors include Meghdad Rahdar, Thazha P. Prakash, Eric E. Swayze, Isis Pharmaceuticals; Moira A. McMahon, Ludwig Cancer Research and UC San Diego.

This research was funded, in part, by the National Institutes of Health (grants R01-GM 074150, R01-NS27036 and F32-GM109657). Cleveland is a paid consultant of Isis Pharmaceuticals.

Full study: http://doi.org/10.1073/pnas.1520883112

Media Contact

Heather Buschman
hbuschman@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman | EurekAlert!

Further reports about: CRISPR Cas9 DNA Medicine RNA drugs enzyme industrial scale nervous system

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>