Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risks involved with transgenic fish

27.08.2009
Fast growing transgenic fish can revolutionise commercial fish farming and relieve the pressure on overexploited fish stocks.

But what happens in the natural environment if transgenic fish escape?

Researchers at the University of Gothenburg have studied transgenic fish on behalf of the EU and are urging caution:

-Until further notice transgenic fish should be bred in closed systems on land, says Fredrik Sundström at the Department of Zoology, University of Gothenburg, Sweden

By furnishing fish with genes from other organisms, so-called transgenes, researchers have succeeded in producing fish that grow considerably faster or are more resistant to diseases. Fish can also be modified to cope better with cold, which facilitates breeding in colder conditions. There are major benefits for commercial fish farming as transgenic fish are expected to deliver higher production and better yields. However, transgenic fish can also entail risks and undesirable effects on the natural environment.

More resistant to toxins
For example, transgenic fish can be more resistant to environmental toxins, which could entail the accumulation of toxins that ultimately end up in consumers. There are also misgivings that the higher level of growth hormone in the fish can affect people. Researchers at the University of Gothenburg have therefore been commissioned by the EU to study the environmental effects of GMO (genetically modified organisms) within fish farming. The results of the studies show that the genetically modified fish should be treated with great care.
Simulated escapes
Fredrik Sundström, PhD at the Department of Zoology, has studied transgenic salmon and rainbow trout to ascertain what ecological risks they might constitute for the natural environment. The study, which simulated escapes in a laboratory environment, shows that transgenic fish have a considerably greater effect on the natural environment than hatchery-reared non-transgenic fish when they escape. For example, genetically modified fish survive better when there is a shortage of food, and benefit more than non-transgenic fish from increasing water temperatures.

-It is probably due to the fact that genetically modified fish have a greater ability to compete and are better at converting food, says Fredrik Sundström.

Natural breeds are under threat
If transgenic fish become established in natural stocks they would be able to outcompete the natural breeds. However, conducting studies in a laboratory environment that imitates nature is complicated, which makes it difficult to predict how escaped transgenic fish affect the natural environment. Fredrik Sundström's conclusion is that international consensus is required before commercial farming can be permitted, and that a precautionary principle must be applied.

-One option is to farm the transgenic fish on land, which would make escape impossible. At least fertile fish should be kept in a closed system, says Fredrik Sundström.

As of yet no country has permitted commercial farming of transgenic fish, but several applications for such operations are under consideration by authorities in both the USA and the EU.

Contact:
Fredrik Sundström, Department of Zoology, University of Gothenburg
+46 (0)734-084 922
fred.sundstrom@gmail.com
FACTS
The Ecological Risk Assessment of Transgenic Salmon project commenced in May 2005 and concluded in April 2009. It has been conducted at the Centre for Aquaculture and Environmental Research in Vancouver, Canada on behalf of the EU, the Swedish Research Council Formas and the University of Gothenburg. Coordinator in Sweden is Professor Jörgen Johnsson, Department of Zoology.
FACTS ABOUT TRANSGENIC FISH
Transgenic fish are created by transferring genes to fish from other species, including human beings. The gene selected is propagated using bacteria and then isolated, purified and introduced into the eggs of the host fish by microinjection. The genes transferred contain a DNA sequence with codes for the required characteristic. Hitherto researchers have genetically modified some twenty fish species, including carp, salmon and catfish.
http://www.science.gu.se/aktuellt/nyheter/Nyheter+Detalj//
Risker_med_genmodifierad_fisk_.cid889631

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>