Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risks involved with transgenic fish

27.08.2009
Fast growing transgenic fish can revolutionise commercial fish farming and relieve the pressure on overexploited fish stocks.

But what happens in the natural environment if transgenic fish escape?

Researchers at the University of Gothenburg have studied transgenic fish on behalf of the EU and are urging caution:

-Until further notice transgenic fish should be bred in closed systems on land, says Fredrik Sundström at the Department of Zoology, University of Gothenburg, Sweden

By furnishing fish with genes from other organisms, so-called transgenes, researchers have succeeded in producing fish that grow considerably faster or are more resistant to diseases. Fish can also be modified to cope better with cold, which facilitates breeding in colder conditions. There are major benefits for commercial fish farming as transgenic fish are expected to deliver higher production and better yields. However, transgenic fish can also entail risks and undesirable effects on the natural environment.

More resistant to toxins
For example, transgenic fish can be more resistant to environmental toxins, which could entail the accumulation of toxins that ultimately end up in consumers. There are also misgivings that the higher level of growth hormone in the fish can affect people. Researchers at the University of Gothenburg have therefore been commissioned by the EU to study the environmental effects of GMO (genetically modified organisms) within fish farming. The results of the studies show that the genetically modified fish should be treated with great care.
Simulated escapes
Fredrik Sundström, PhD at the Department of Zoology, has studied transgenic salmon and rainbow trout to ascertain what ecological risks they might constitute for the natural environment. The study, which simulated escapes in a laboratory environment, shows that transgenic fish have a considerably greater effect on the natural environment than hatchery-reared non-transgenic fish when they escape. For example, genetically modified fish survive better when there is a shortage of food, and benefit more than non-transgenic fish from increasing water temperatures.

-It is probably due to the fact that genetically modified fish have a greater ability to compete and are better at converting food, says Fredrik Sundström.

Natural breeds are under threat
If transgenic fish become established in natural stocks they would be able to outcompete the natural breeds. However, conducting studies in a laboratory environment that imitates nature is complicated, which makes it difficult to predict how escaped transgenic fish affect the natural environment. Fredrik Sundström's conclusion is that international consensus is required before commercial farming can be permitted, and that a precautionary principle must be applied.

-One option is to farm the transgenic fish on land, which would make escape impossible. At least fertile fish should be kept in a closed system, says Fredrik Sundström.

As of yet no country has permitted commercial farming of transgenic fish, but several applications for such operations are under consideration by authorities in both the USA and the EU.

Contact:
Fredrik Sundström, Department of Zoology, University of Gothenburg
+46 (0)734-084 922
fred.sundstrom@gmail.com
FACTS
The Ecological Risk Assessment of Transgenic Salmon project commenced in May 2005 and concluded in April 2009. It has been conducted at the Centre for Aquaculture and Environmental Research in Vancouver, Canada on behalf of the EU, the Swedish Research Council Formas and the University of Gothenburg. Coordinator in Sweden is Professor Jörgen Johnsson, Department of Zoology.
FACTS ABOUT TRANSGENIC FISH
Transgenic fish are created by transferring genes to fish from other species, including human beings. The gene selected is propagated using bacteria and then isolated, purified and introduced into the eggs of the host fish by microinjection. The genes transferred contain a DNA sequence with codes for the required characteristic. Hitherto researchers have genetically modified some twenty fish species, including carp, salmon and catfish.
http://www.science.gu.se/aktuellt/nyheter/Nyheter+Detalj//
Risker_med_genmodifierad_fisk_.cid889631

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>