Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risks involved with transgenic fish

27.08.2009
Fast growing transgenic fish can revolutionise commercial fish farming and relieve the pressure on overexploited fish stocks.

But what happens in the natural environment if transgenic fish escape?

Researchers at the University of Gothenburg have studied transgenic fish on behalf of the EU and are urging caution:

-Until further notice transgenic fish should be bred in closed systems on land, says Fredrik Sundström at the Department of Zoology, University of Gothenburg, Sweden

By furnishing fish with genes from other organisms, so-called transgenes, researchers have succeeded in producing fish that grow considerably faster or are more resistant to diseases. Fish can also be modified to cope better with cold, which facilitates breeding in colder conditions. There are major benefits for commercial fish farming as transgenic fish are expected to deliver higher production and better yields. However, transgenic fish can also entail risks and undesirable effects on the natural environment.

More resistant to toxins
For example, transgenic fish can be more resistant to environmental toxins, which could entail the accumulation of toxins that ultimately end up in consumers. There are also misgivings that the higher level of growth hormone in the fish can affect people. Researchers at the University of Gothenburg have therefore been commissioned by the EU to study the environmental effects of GMO (genetically modified organisms) within fish farming. The results of the studies show that the genetically modified fish should be treated with great care.
Simulated escapes
Fredrik Sundström, PhD at the Department of Zoology, has studied transgenic salmon and rainbow trout to ascertain what ecological risks they might constitute for the natural environment. The study, which simulated escapes in a laboratory environment, shows that transgenic fish have a considerably greater effect on the natural environment than hatchery-reared non-transgenic fish when they escape. For example, genetically modified fish survive better when there is a shortage of food, and benefit more than non-transgenic fish from increasing water temperatures.

-It is probably due to the fact that genetically modified fish have a greater ability to compete and are better at converting food, says Fredrik Sundström.

Natural breeds are under threat
If transgenic fish become established in natural stocks they would be able to outcompete the natural breeds. However, conducting studies in a laboratory environment that imitates nature is complicated, which makes it difficult to predict how escaped transgenic fish affect the natural environment. Fredrik Sundström's conclusion is that international consensus is required before commercial farming can be permitted, and that a precautionary principle must be applied.

-One option is to farm the transgenic fish on land, which would make escape impossible. At least fertile fish should be kept in a closed system, says Fredrik Sundström.

As of yet no country has permitted commercial farming of transgenic fish, but several applications for such operations are under consideration by authorities in both the USA and the EU.

Contact:
Fredrik Sundström, Department of Zoology, University of Gothenburg
+46 (0)734-084 922
fred.sundstrom@gmail.com
FACTS
The Ecological Risk Assessment of Transgenic Salmon project commenced in May 2005 and concluded in April 2009. It has been conducted at the Centre for Aquaculture and Environmental Research in Vancouver, Canada on behalf of the EU, the Swedish Research Council Formas and the University of Gothenburg. Coordinator in Sweden is Professor Jörgen Johnsson, Department of Zoology.
FACTS ABOUT TRANSGENIC FISH
Transgenic fish are created by transferring genes to fish from other species, including human beings. The gene selected is propagated using bacteria and then isolated, purified and introduced into the eggs of the host fish by microinjection. The genes transferred contain a DNA sequence with codes for the required characteristic. Hitherto researchers have genetically modified some twenty fish species, including carp, salmon and catfish.
http://www.science.gu.se/aktuellt/nyheter/Nyheter+Detalj//
Risker_med_genmodifierad_fisk_.cid889631

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>