Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Risk of vibration-induced vascular injuries linked to vibration frequency differences

Such as loss of dexterity

Speaking on April 19 at the Experimental Biology 2009 meeting in New Orleans, Dr. Kristine Krajnak, a team leader in the Engineering and Control Technologies Branch of the Health Effects Laboratory Division of NIOSH in Morgantown, West Virginia, describes results from the first study to directly link the different physical responses of tissue that occur with exposure to different vibration frequencies with biological mechanisms underlying the development of vascular dysfunction. Her presentation is part of the scientific program of The American Physiological Society.

The study, along with results of other studies conducted by NIOSH, supports the importance of reducing job-related exposure to vibration. Ongoing research is evaluating the effectiveness of anti-vibration devices, such as anti-vibration gloves and tools.

Higher frequency vibrations produced by an electric sander (greater than 100 Hz) are smoother than the slower vibrations of an electric hand drill (approximately 63 Hz) and therefore are less likely to cause users discomfort.

Don't let that fool you into not using protective devices that can reduce your exposure to vibration, she says. The new research study conducted at the National Institute for Occupational Safety and Health (NIOSH) suggests that exposure to high and low frequencies cause different physiological responses, but both may affect the risk of developing vibration-induced peripheral vascular dysfunction.

Of the 1.1 to 1.5 million U.S. workers exposed to hand transmitted vibration on a fairly regular basis, approximately half eventually develop some disorder such as Vibration White Finger, in which a single finger or sometimes the entire hand turns white and numb when exposed to the cold, due to restricted blood flow.

Workers also may experience reductions in tactile sensitivity, grip strength, and/or manual dexterity. Earlier studies have shown that risk goes up with frequency and duration of exposure, although NIOSH studies are underway to determine why certain people appear more susceptible to shorter exposure durations.

Dr. Krajnak's team looked at two aspects of vibration injury about which very little is known: the mechanisms of injury and the differences in response to frequency of vibration. The researchers used rats, since the tissues, nerves and arteries of rat-tails are similar to those in human fingers and the tails are known to respond to vibration in a way similar to that seen in fingers.

For four hours a day (the longest time a human can be exposed to workplace vibration according to U.S. and international standards) for 10 days, 15 rats (five in each group) were placed in a container where their tails were vibrated at either 63, 125 or 250 Hz. One control group of five rats accompanied them to the experimental area, to make sure any results seen were not related to noise or change of locale. A second control group stayed in their home cages, uninvolved in the activity.

After the last exposure, the scientists examined the tail arteries for changes. Neither control group had changes, suggesting the changes seen were directly related to the effects of vibration. The rats that experienced high frequency (125 and 250 Hz) vibration had higher levels of measures of oxidative stress, while rats that experienced the lower frequency (65 Hz) vibration showed higher levels of pro-inflammatory factors.

The changes seen following higher frequency vibration are associated with more immediate changes in the peripheral vascular system, such as those seen in workers with vibration injury, says Dr. Krajnak, but the changes following lower frequency vibration also can lead to vascular problems.

Co-authors of the Experimental Biology presentation are NIOSH biologists Stacey Waugh, Roger Miller, and Claud Johnson, and NIOSH biostatistician Dr. Michael Kashon, all of Morgantown. The research was funded by National Institute of Occupational Safety and Health.

Sylvia Wrobel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>