Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Risk Variant for Atopic Dermatitis Identified

07.04.2009
Scientists in Germany have identified a gene variant on chromosome 11 that is associated with an increased risk of atopic dermatitis.

In a large genome-wide association study the researchers scanned the genomes of more than 9600 participants from Germany, Poland and the Czech Republic.

"Our findings cast new light on the pathogenesis of the disease," said Professor Young-Ae Lee (Charité / MDC). The pediatrician-researcher and her collaborators hope the study will lead to a new approach to targeted therapy for this chronic skin disorder. (Nature Genetics doi: 10.1038/ng.347)*.

More and more people suffer from atopic dermatitis, which is also known as atopic or infantile eczema. Atopic dermatitis is a chronic (long-lasting) inflammatory skin disease that typically affects the large flexures such as the bend of the elbows or the back of the knees. Patients suffer from recurrent flares of intense itching, dryness and redness of the skin, with weeping of clear fluid in the acute stage, and skin thickening (lichenification) in the chronic stage. Along with hay fever and asthma, atopic dermatitis is one of the most common allergic disorders. In the industrialized countries about 15 percent of young children are affected.

Atopic dermatitis is typically the first clinical manifestation of allergic disease. In most cases atopic dermatitis appears within the first few years of life. For the majority of affected children this marks the beginning of an "allergic career", which in later years evolves into hay fever or asthma. Just what triggers the outbreak of atopic dermatitis is not yet fully understood. However, epidemiological studies indicate that the genetic contribution is substantial.

For that reason, of the total of 9600 study participants, the scientists decided to scrutinize the genomes of 3011 individuals more closely. These included children and adults with atopic dermatitis, healthy controls, as well as entire families in which at least two children have atopic dermatitis. The researchers scanned the entire genome, searching for genetic variants that are especially common in atopic dermatitis patients.

The study demonstrates that several genes are involved in the pathogenesis of atopic dermatitis. Most importantly, the researchers identified a variant on chromosome 11 that is particularly common in the patients with atopic dermatitis. This variant is located in a region containing the gene C11orf30 which encodes the protein EMSY. The scientists suspect that a mutation in this gene is associated with atopic dermatitis. However, the exact role of EMSY in atopic dermatitis still needs to be investigated.

Same variant also a risk factor for Crohn's disease
The same variant on chromosome 11 is also common in patients with Crohn's disease, a chronic inflammatory disease of the gastrointestinal tract. Scientists therefore suspect that this variant on chromosome 11 will unravel a novel common disease mechanism that can lead to chronic inflammation of various organs. The variant is very widespread: in Europe, 36 percent of the population are carriers. Now the MDC and Charité scientists want to decipher the exact function of EMSY in atopic dermatitis.

Furthermore, the scientists show that other previously unknown variants in genes related to the outermost skin layer (epidermis) increase the risk for the disease. The researchers hope that their findings will contribute to improved treatment for atopic dermatitis sufferers. "To develop a targeted intervention," they explained, "we must first fully understand the underlying disease mechanism."

A common variant on chromosome 11q13 is associated with atopic dermatitis

Jorge Esparza-Gordillo1,2,16, Stephan Weidinger3,4,16, Regina Fölster-Holst5, Anja Bauerfeind2, Franz Ruschendorf2, Giannino Patone2, Klaus Rohde2, Ingo Marenholz1,2, Florian Schulz1,2, Tamara Kerscher1,2, Norbert Hubner2, Ulrich Wahn1, Stefan Schreiber6,7, Andre Franke6, Rainer Vogler7, Simon Heath8, Hansjörg Baurecht4,9, Natalija Novak10, Elke Rodriguez3,4, Thomas Illig11, Min-Ae Lee-Kirsch12, Andrzej Ciechanowicz13, Michael Kurek14, Tereza Piskackova15, Milan Macek15, Young-Ae Lee1,2, Andreas Ruether6

1 Pediatric Pneumology and Immunology, Charité University Medical School Berlin, Berlin, Germany
2 Max Delbrück Center (MDC) for Molecular Medicine, Berlin-Buch, Germany
3 Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
4 Division of Environmental Dermatology and Allergy, Helmholtz Zentrum München and ZAUM Center for Allergy and Environment, Technische Universität München, Munich, Germany
5 Clinic for Dermatology, Venerology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
6 Institute for Clinical Molecular Biology, Christian Albrecht University, Kiel, Germany
7 POPGEN Biobank Project, Christian Albrecht University, Kiel, Germany
8 Centre National de Génotypage, Evry, France
9 Institute for Medical Statistics and Epidemiology IMSE, Technische Universität München, Munich, Germany
10 Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
11 Department of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
12 University Children's Hospital, Technical University Dresden, Dresden, Germany
13 Dept. of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
14 Department of Clinical Allergology, Pomeranian, Pomeranian Medical University, Szczecin, Poland
15 Department of Biology and Medical Genetics, Charles University Prague - 2nd Medical School and Faculty, Hospital Motol, Prague, Czech Republic
16 These authors contributed equally to this work
Corresponding author: Prof. Dr. Young-Ae Lee, Pediatric Pneumology and Immunology, Charite Campus Virchow Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>